zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Solitary smooth hump solutions of the Camassa-Holm equation by means of the homotopy analysis method. (English) Zbl 1139.76013
Summary: We use the homotopy analysis method to find a family of solitary smooth hump solutions of Camassa-Holm equation. This approximate solution, which is obtained as a series in exponentials, agrees well with the known exact solution. This paper complements the work of {\it W. Wu} and {\it S. Liao} [ibid. 26, No. 1, 177--185 (2005; Zbl 1071.76009)] who used the homotopy analysis method to find a different family of solitary-wave solutions.

MSC:
76B25Solitary waves (inviscid fluids)
76M25Other numerical methods (fluid mechanics)
35Q51Soliton-like equations
WorldCat.org
Full Text: DOI
References:
[1] Liao, S. J.: Beyond perturbation: introduction to the homotopy analysis method, (2003)
[2] Liao, S. J.: A new branch of solutions of boundary-layer flows over an impermeable stretched plate, Int J heat mass transfer 48, 2529-2539 (2005) · Zbl 1189.76142 · doi:10.1016/j.ijheatmasstransfer.2005.01.005
[3] Liao, S. J.: Series solutions of unsteady boundary-layer flows over a stretching flat plate, Stud appl math 117, 239-264 (2006) · Zbl 1145.76352 · doi:10.1111/j.1467-9590.2006.00354.x
[4] Liao, S. J.; Magyari, E.: Exponentially decaying boundary layers as limiting cases of families of algebraically decaying ones, Z angew math phys (ZAMP) 57, 777-792 (2006) · Zbl 1101.76056 · doi:10.1007/s00033-006-0061-x
[5] Liao, S. J.; Su, J.; Chwang, A. T.: Series solutions for a nonlinear model of combined convective and radiative cooling of a spherical body, Int J heat mass transfer 49, 2437-2445 (2006) · Zbl 1189.76549 · doi:10.1016/j.ijheatmasstransfer.2006.01.030
[6] Tan, Y.; Xu, H.; Liao, S. J.: Explicit series solution of travelling waves with a front of Fisher equation, Chaos, solitons & fractals 31, 462-472 (2007) · Zbl 1143.35313 · doi:10.1016/j.chaos.2005.10.001
[7] Wu, W.; Liao, S. J.: Solving solitary waves with discontinuity by means of the homotopy analysis method, Chaos, solitons & fractals 26, 177-185 (2005) · Zbl 1071.76009 · doi:10.1016/j.chaos.2004.12.016
[8] Abbasbandy, S.: The application of homotopy analysis method to nonlinear equations arising in heat transfer, Phys lett A 360, 109-113 (2006) · Zbl 1236.80010
[9] Abbasbandy, S.: The application of homotopy analysis method to solve a generalized Hirota -- satsuma coupled KdV equation, Phys lett A 361, 478-483 (2007) · Zbl 1273.65156
[10] Abbasbandy, S.: Homotopy analysis method for heat radiation equations, Int commun heat mass transfer 34, 380-387 (2007)
[11] Abbasbandy S, Samadian Zakaria F. Soliton solutions for the fifth-order KdV equation with the homotopy analysis method. Nonlinear Dyn, 2008, doi:10.1007/s11071-006-9193-y. · Zbl 1170.76317
[12] Hayat, T.; Khan, M.: Homotopy solutions for a generalized second-grade fluid past a porous plate, Nonlinear dyn 42, 395-405 (2005) · Zbl 1094.76005 · doi:10.1007/s11071-005-7346-z
[13] Hayat, T.; Khan, M.; Ayub, M.: On non-linear flows with slip boundary condition, Z angew math phys (ZAMP) 56, 1012-1029 (2005) · Zbl 1097.76007 · doi:10.1007/s00033-005-4006-6
[14] Liao, S. J.; Cheung, K.: Homotopy analysis of nonlinear progressive waves in deep water, J eng math 45, 105-116 (2003) · Zbl 1112.76316 · doi:10.1023/A:1022189509293
[15] Sajid, M.; Hayat, T.; Asghar, S.: On the analytic solution of the steady flow of a fourth grade fluid, Phys lett A 355, 18-26 (2006)
[16] Tan, Y.; Abbasbandy, S.: Homotopy analysis method for quadratic Riccati differential equation, Commun nonlinear sci numer simul 13, 539-546 (2008) · Zbl 1132.34305 · doi:10.1016/j.cnsns.2006.06.006
[17] Wang, C.: Analytic solutions for a liquid film on an unsteady stretching surface, Heat mass transfer 42, 759-766 (2006)
[18] He, J. H.: Comparison of homotopy perturbation method and homotopy analysis method, Appl math comput 156, 527-539 (2004) · Zbl 1062.65074 · doi:10.1016/j.amc.2003.08.008
[19] Liao, S. J.: Comparison between the homotopy analysis method and homotopy perturbation method, Appl math comput 169, 1186-1194 (2005) · Zbl 1082.65534 · doi:10.1016/j.amc.2004.10.058
[20] Hayat, T.; Sajid, M.: On analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder, Phys lett A 361, 316-322 (2007) · Zbl 1170.76307 · doi:10.1016/j.physleta.2006.09.060
[21] Camassa, R.; Holm, D. D.: An integrable shallow water equation with peaked solitons, Phys rev lett 71, 1661-1664 (1993) · Zbl 0972.35521 · doi:10.1103/PhysRevLett.71.1661
[22] Dai, H. H.: Exact travelling-wave solutions of an integrable equation arising in hyperelastic rods, Wave motion 28, 367-381 (1998) · Zbl 1074.74541 · doi:10.1016/S0165-2125(98)00014-6
[23] Boyd, J. P.: Near-corner waves of the Camassa -- Holm equation, Phys lett A 336, 342-348 (2005) · Zbl 1136.35445 · doi:10.1016/j.physleta.2004.12.055
[24] Camassa, R.; Holm, D. D.; Hyman, J. M.: A new integrable shallow water equation, Adv appl mech 31, 1-33 (1994) · Zbl 0808.76011
[25] Camassa, R.: Characteristics and the initial value problem of a completely integrable shallow water equation, Discrete contin dyn syst ser B 3, 115-139 (2003) · Zbl 1031.37063 · doi:10.3934/dcdsb.2003.3.115
[26] Chen, C.; Tang, M.: A new type of bounded waves for Degasperis -- Procesi equation, Chaos, solitons & fractals 27, 698-704 (2006) · Zbl 1082.35044 · doi:10.1016/j.chaos.2005.04.040
[27] Lenells, J.: Traveling wave solutions of the Camassa -- Holm equation, J differen equat 217, 393-430 (2005) · Zbl 1082.35127 · doi:10.1016/j.jde.2004.09.007
[28] Mustafa, O. G.: A note on the Degasperis -- Procesi equation, J nonlinear math phys 12, 10-14 (2005) · Zbl 1067.35078 · doi:10.2991/jnmp.2005.12.1.2
[29] Parker, A.: On the Camassa -- Holm equation and a direct method of solution: I. Bilinear form and solitary waves, Proc roy soc London A 460, 2929-2957 (2004) · Zbl 1068.35110 · doi:10.1098/rspa.2004.1301
[30] Parkes, E. J.; Vakhnenko, V. O.: Explicit solutions of the Camassa -- Holm equation, Chaos, solitons & fractals 26, 1309-1316 (2005) · Zbl 1072.35156
[31] Qian, T.; Tang, M.: Peakons and periodic cusp waves in a generalized Camassa -- Holm equation, Chaos, solitons & fractals 12, 1347-1360 (2001) · Zbl 1021.35086 · doi:10.1016/S0960-0779(00)00117-X
[32] Shen, J.; Xu, W.; Li, W.: Bifurcations of travelling wave solutions in a new integrable equation with peakon and compactons, Chaos, solitons & fractals 27, 413-425 (2006) · Zbl 1094.35109 · doi:10.1016/j.chaos.2005.04.020
[33] Tian, L.; Song, X.: New peaked solitary wave solutions of the generalized Camassa -- Holm equation, Chaos, solitons & fractals 19, 621-637 (2004) · Zbl 1068.35123 · doi:10.1016/S0960-0779(03)00192-9
[34] Wazwaz, A.: New solitary wave solutions to the modified forms of Degasperis -- Procesi and Camassa -- Holm equations, Appl math comput 186, 130-141 (2007) · Zbl 1114.65124 · doi:10.1016/j.amc.2006.07.092