zbMATH — the first resource for mathematics

A study of the behaviour of quantum dynamics when \(h\to 0\). (Spanish) Zbl 1139.81303
The paper gives an exposition of semi-classical limit of quantum mechanics when Planck constant tends to zero. The main used tool is calculus of pseudo-differential and integral Fourier operators.
81P05 General and philosophical questions in quantum theory
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
Full Text: EuDML
[1] S. ALBEVERIO - R. HOEGH-KROHN, Oscillatory Integrals and the Method of Stationary Phase in Infinitely Many Dimensions, with applications to the Classical Limit of Quantum Mechanics; Inv. Math., Vol. 40 (1977), pp. 59-106. Zbl0449.35092 MR474436 · Zbl 0449.35092 · doi:10.1007/BF01389861
[2] H. BRÉZIS, Analyse fonctionelle, Masson Editeur, Paris (1983). Zbl0511.46001 MR697382 · Zbl 0511.46001
[3] J. CHAZARAIN - A. PIRIOU, Introduction à la théorie des equations aux derivées partielles linéaires, Gauthier-Villars, Paris (1981). Zbl0446.35001 MR598467 · Zbl 0446.35001
[4] J. CHAZARAIN, Spectre d’un hamiltonien quantique et mécanique classique, Comm. Partial Diff. Equat., 5, no. 6 (1980), pp. 595-644. Zbl0437.70014 MR578047 · Zbl 0437.70014 · doi:10.1080/0360530800882148
[5] J. J. DUISTERMAT, Oscillatory Integrals, Lagrange Immersions and Unfolding of Singularities, Comm. Pure and Appl. Math., Vol. 27 (1974), pp. 207-281. Zbl0285.35010 MR405513 · Zbl 0285.35010 · doi:10.1002/cpa.3160270205
[6] G. A. HAGEDORN, Semiclassical quantum mechanics I. The \check K0 limit for coherent states, Comm. Math. Phys., 71, no. 1 (1980), pp. 77-93. MR556903
[7] J. HARO, El límit clàssic de la mecànica quàntica, Tesi Doctoral, U.A.B. (1997).
[8] J. HARO, Étude classique de l’équation de Dirac, Ann. Fond. Louis de Broglie, 23, no. 3-4 (1998), pp. 166-172. MR1713230 · Zbl 1329.81187
[9] J. HARTHONG, La propagation des ondes; I.R.M.A., Strasbourg (1978). · Zbl 0467.35039
[10] J. HARTHONG, Études sur la mécanique quantique; Asterisque, 111 (1984). Zbl0589.35002 MR735083 · Zbl 0589.35002
[11] B. HELFFER, Théorie spectrale pour des opérateurs globalement elliptiques, Asterisque 112 (1984). Zbl0541.35002 MR743094 · Zbl 0541.35002
[12] B. HELFFER - D. ROBERT, Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques, Ann. Inst. Fourier, Grenoble 31, 3 (1981), pp. 169-223. Zbl0451.35022 MR638623 · Zbl 0451.35022 · doi:10.5802/aif.844 · numdam:AIF_1981__31_3_169_0 · eudml:74503
[13] L. HORMANDER, Fourier Integral Operators I, Acta Math., 127 (1971), pp. 79-183. Zbl0212.46601 MR388463 · Zbl 0212.46601 · doi:10.1007/BF02392052
[14] V. P. MASLOV, Théorie des perturbations et méthodes assymptotiques, Dunod, Paris (1972). Zbl0247.47010 · Zbl 0247.47010
[15] V. P. MASLOV - M. V. FEDORIUK, Semi-classical aproximation in quantum mechanics, D. Riedel Publishing Compay, Dordrecht, Holland (1981). Zbl0458.58001 · Zbl 0458.58001
[16] V. P. MASLOV - V. E. NAZAIKINSKI, Assymptotics of operators and PseudoDifferential Equations, Consultants Bureau, New York (1988). MR954389
[17] D. ROBERT, Autour de l’approximation Semi-classique, Progress in Mathematics, 68, Birkhäuser (1987). Zbl0621.35001 MR897108 · Zbl 0621.35001
[18] A. TRUMAN, Feynman Path Integrals and Quantum Mechanics as \check K0, J. Math. Phys., Vol. 17, no. 10 (1976), pp. 1852-1862. MR418760
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.