×

zbMATH — the first resource for mathematics

Ising model in half-space: a series of phase transitions in low magnetic fields. (English. Russian original) Zbl 1139.82309
Theor. Math. Phys. 153, No. 2, 1539-1574 (2007); translation from Teor. Mat. Fiz. 153, No. 2, 220-261 (2007).
Summary: For the Ising model in half-space at low temperatures and for the “unstable boundary condition,” we prove that for each value of the external magnetic field \(\mu\), there exists a spin layer of thickness \(q(\mu )\) adjacent to the substrate such that the mean spin is close to - 1 inside this layer and close to +1 outside it. As \(\mu \) decreases, the thickness of the \((-1)\)-spin layer changes jumpwise by unity at the points \(\mu _{q}\), and \(q(\mu ) \rightarrow \infty \) as \(\mu \rightarrow +0\). At the discontinuity points \(\mu _{q}\) of \(q(\mu )\), two surface phases coexist. The surface free energy is piecewise analytic in the domain Re \(\mu > 0\) and at low temperatures. We consider the Ising model in half-space with an arbitrary external field in the zeroth layer and investigate the corresponding phase diagram. We prove Antonov’s rule and construct the equation of state in lower orders with the precision of \(x^{7}, x = e^{-2\varepsilon}\). In particular, with this precision, we find the points of coexistence of the phases 0, 1, 2 and the phases 0, 2, 3, where the phase numbers correspond to the height of the layer of unstable spins over the substrate.

MSC:
82B26 Phase transitions (general) in equilibrium statistical mechanics
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. W. Gibbs, Thermodynamics: Statistical Mechanics [in Russian], Nauka, Moscow (1982).
[2] Y. Higuchi, ”On the absence of non-translation invariant Gibbs states for the two-dimensional Ising model,” in: Random Fields (Colloq. Math. Soc. János Bolyai, Vol. 27, J. Fritz, J. L. Lebowitz, and D. Szász, eds.), Vol. 1, North-Holland, Amsterdam (1981), p. 517–534.
[3] M. Aizenmann, Comm. Math. Phys., 73, 83–94 (1980). · doi:10.1007/BF01942696
[4] R. L. Dobrushin, Theor. Probability Appl., 17, 582–600 (1972). · Zbl 0275.60119 · doi:10.1137/1117073
[5] J. L. Lebowitz, J. Statist. Phys., 16, 463–476 (1977). · doi:10.1007/BF01152284
[6] J. Bricmont, J. L. Lebowitz, C. E. Pfister, and E. Olivieri, Comm. Math. Phys., 66, 1–20 (1979). · Zbl 0414.60093 · doi:10.1007/BF01197743
[7] J. Bricmont, J. L. Lebowitz, and C. E. Pfister, Comm. Math. Phys., 66, 21–36 (1979). · Zbl 0414.60094 · doi:10.1007/BF01197744
[8] J. Bricmont, J. L. Lebowitz, and C. E. Pfister, Comm. Math. Phys., 69, 267–291 (1979). · Zbl 0429.60100 · doi:10.1007/BF01197448
[9] J. Bricmont, K. Kuroda, and J. L. Lebowitz, J. Statist. Phys., 33, 59–75 (1983). · doi:10.1007/BF01009748
[10] S. A. Pirogov and Ya. G. Sinai, Theor. Math. Phys., 25, 1185–1192 (1975); 26, 39–49 (1976). · doi:10.1007/BF01040127
[11] H. van Beijeren, Comm. Math. Phys., 40, 1–6 (1985).
[12] J. L Lebowitz, Comm. Math. Phys., 35, 87–92 (1974). · doi:10.1007/BF01646608
[13] D. Ruelle, Statistical Mechanics: Rigorous Results, Benjamin, New York (1969). · Zbl 0177.57301
[14] S. B. Shlosman, Theor. Math. Phys., 66, 284–293 (1986). · doi:10.1007/BF01018227
[15] J. Bricmont, A. El Mellouki, and J. Fröhlich, J. Statist. Phys., 46, 743–798 (1986); 47, 761–771 (1987). · doi:10.1007/BF01010444
[16] J. Fröhlich and C. E. Pfister, Comm. Math. Phys., 109, 493–523 (1987). · doi:10.1007/BF01206148
[17] J. Fröhlich and C. E. Pfister, Comm. Math. Phys., 112, 51–74 (1987). · Zbl 1108.82302 · doi:10.1007/BF01217679
[18] J. Fröhlich and C. E. Pfister, Europhys. Lett., 3, 845–852 (1987). · doi:10.1209/0295-5075/3/7/012
[19] C. E. Pfister, J. Statist. Phys., 47, 761–771 (1987). · doi:10.1007/BF01206157
[20] C. E. Pfister and O. Penrose, Comm. Math. Phys., 115, 691–699 (1988). · doi:10.1007/BF01224133
[21] A. G. Basuev, Soviet Phys. Dokl., 33, 249–250 (1988).
[22] V. L. Kuz’min, Theor. Math. Phys., 76, 961–967 (1988). · doi:10.1007/BF01016860
[23] K. Binder, ”Phase transitions at surfaces,” in: Cohesion and Structure of Surfaces (K. Binder, M. Bowker, J. E. Inglesfield, and P. J. Rous, eds.), Vol. 4, North-Holland, Amsterdam (1995), pp. 121–284.
[24] L. Bahmad, A. Benyoussef, and H. Ez-Zahraouy, Phys. Rev. E, 66, 056117 (2002).
[25] E. I. Dinaburg and A. E. Mazel, J. Statist. Phys., 74, 533–563 (1994). · Zbl 0827.60099 · doi:10.1007/BF02188570
[26] F. Cesi and F. Martinelli, J. Statist. Phys., 82, 823–913 (1996); Comm. Math. Phys., 177, 173–201 (1996). · Zbl 1042.82512 · doi:10.1007/BF02179794
[27] A. C. D. van Enter, R. Fernández, and A. D. Sokal, J. Statist. Phys., 72, 879–1167 (1993). · Zbl 1101.82314 · doi:10.1007/BF01048183
[28] J. Lörinczi, Helv. Phys. Acta, 68, 605–626 (1995).
[29] P. Holický, R. Kotecký, and M. Zahradnik, J. Statist. Phys., 50, 755–812 (1988). · Zbl 1084.82517 · doi:10.1007/BF01026500
[30] R. L. Dobrushin, R. Kotecký, and S. Shlosman, Wul. Construction: A Global Shape from Local Interactions (Transl. Math. Monogr., Vol. 104), Amer. Math. Soc., Providence, R. I. (1992). · Zbl 0917.60103
[31] P. Holický, R. Kotecký, and M. Zahradnik, Ann. Henri Poincaré, 3, 203–267 (2002). · Zbl 0996.82022 · doi:10.1007/s00023-002-8616-7
[32] T. Bodineau and E. Presutti, Ann. Henri Poincaré, 4, 847–896 (2003). · Zbl 1106.82006 · doi:10.1007/s00023-003-0149-1
[33] Y. Velenik, Probab. Theory Related Fields, 129, 83–112 (2004). · Zbl 1078.60088 · doi:10.1007/s00440-003-0328-5
[34] Y. Velenik, Probab. Surv., 3, 112–169 (2006). · Zbl 1189.82051 · doi:10.1214/154957806000000050
[35] M. Zahradnik, Comm. Math. Phys., 93, 559–581 (1984). · doi:10.1007/BF01212295
[36] A. G. Basuev, Theor. Math. Phys., 64, 716–734 (1985); 72, 861–871 (1987); 153, 1434–1457 (2007). · doi:10.1007/BF01017040
[37] F. Martinelli, E. Olivieri, and R. H. Schonmann, Comm. Math. Phys., 165, 33–47 (1994). · Zbl 0811.60097 · doi:10.1007/BF02099735
[38] R. H. Schonmann and S. B. Shlosman, Comm. Math. Phys., 170, 453–482 (1995). · Zbl 0821.60097 · doi:10.1007/BF02108338
[39] R. H. Schonmann and N. Yoshida, Comm. Math. Phys., 189, 299–309 (1997). · Zbl 0888.60089 · doi:10.1007/s002200050203
[40] N. Yoshida, J. Statist. Phys., 90, 1015–1035 (1998). · Zbl 0921.60087 · doi:10.1023/A:1023249608957
[41] J. W. Cahn, J. Chem. Phys., 66, 3667–3672 (1977). · doi:10.1063/1.434402
[42] K. Binder, ”Critical behavior at surfaces,” in: Phase Transitions and Critical Phenomena (C. Domb and J. L. Lebowitz, eds.), Vol. 8, Acad. Press, London (1983), pp. 1–144.
[43] M. E. Fisher, J. Statist. Phys., 34, 667–729 (1984). · Zbl 0589.60098 · doi:10.1007/BF01009436
[44] P. G. de Gennes, Rev. Modern Phys., 57, 827–863 (1985). · doi:10.1103/RevModPhys.57.827
[45] D. B. Abraham, ”Surface structure and phase transitions: Exact Results,” in: Phase Transitions and Critical Phenomena (C. Domb and J. L. Lebowitz, eds.), Vol. 10, Acad. Press, London (1986), p. 1.
[46] A. G. Basuev, Theor. Math. Phys., 58, 171–182 (1984). · doi:10.1007/BF01017924
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.