zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Bifurcations and chaos of coupled electrical circuits. (English) Zbl 1139.94302
Summary: The dynamics of two coupled chaotic electrical circuits has been investigated in this paper. Transition boundaries have been obtained to divide the parameter space into regions associated with different types of phase portraits. It is pointed out that two stable equilibrium points coexist for certain parameter conditions, which may evolve to different chaotic attractors via period-doubling bifurcations, respectively.

MSC:
94C05Analytic circuit theory
34C23Bifurcation (ODE)
34C28Complex behavior, chaotic systems (ODE)
37D45Strange attractors, chaotic dynamics
WorldCat.org
Full Text: DOI
References:
[1] Agiza, H. N.; Matouk, A. E.: Adaptive synchronization of Chua’s circuits with fully unknown parameters, Chaos, solitons & fractals 28, 219-227 (2006) · Zbl 1089.94048 · doi:10.1016/j.chaos.2005.05.055
[2] Bi, Q.: Dynamical analysis of two coupled parametrically excited van der Pol oscillators, Int. J. Nonlinear mech. 39, No. 1, 33-54 (2004) · Zbl 1225.34049 · doi:10.1016/S0020-7462(02)00126-9
[3] Bi, Q.: Dynamics and modulated chaos of coupled oscillators, Int. J. Bifurcation chaos 14, No. 1, 337-346 (2004) · Zbl 1070.34062 · doi:10.1142/S0218127404009041
[4] Chua, I. O.; Komuro, M. G.; Matsumoto, T.: The double scroll family part I: Rigorous proof of chaos, IEEE trans. Circuits syst. 33, 1072-1096 (1986) · Zbl 0634.58015 · doi:10.1109/TCS.1986.1085869
[5] Ditto, W. L.; Rauseo, S. N.; Spano, M. L.: Experimental control of chaos, Phys. rev. Lett. 65, 3211-3214 (1990)
[6] Elwakil, A. S.; Kennedy, M. P.: Construction of classes of circuit-independent chaotic oscillators using passive only nonlinear devices, IEEE trans. Circuits syst. 48, 289-307 (2001) · Zbl 0998.94048 · doi:10.1109/81.915386
[7] Elwakil, A. S.; Ozoguz, S.; Kennedy, M. P.: Creation of a complex butterfly attractor using a novel Lorenz-type system, IEEE trans. Circuits syst. 49, No. 4, 527-530 (2002)
[8] Fang, L. P.; Zhang, H.; Tong, Q. Y.: Chaotic circuit information and ordered space, Int. J. Nonlinear sci. Numer. simul. 8, No. 1, 59-62 (2007)
[9] Guo, S. M.; Shieh, L. S.; Chen, G.; Lin, C. F.: Effective chaotic orbit tracker: a prediction-based digital redesign approach, IEEE trans. Circuits syst. 47, 1557-1570 (2000) · Zbl 0999.93024 · doi:10.1109/81.895324
[10] Kapitaniak, T.; Chua, L. O.; Zhong, G. Q.: Experimental evidence of locally intermingled basins of attraction in coupled Chua’s circuits, Chaos, solitons & fractals 8, No. 9, 1517-1522 (1997)
[11] Maccari, A.: Approximate solution of a class of nonlinear oscillators in resonance with a periodic excitation, Nonlinear dyn. 15, 329-343 (1998) · Zbl 0909.34037 · doi:10.1023/A:1008235820302
[12] Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems, Phys. rev. Lett. 64, No. 8, 821-824 (1990) · Zbl 0938.37019
[13] Pikovsky, A.; Rosenblum, M.; Kurths, J.: Synchronization a universal concept in nonlinear sciences, (2001) · Zbl 0993.37002
[14] Radev, R.: Control of non-linear system described by Lorenz’s model, J. autom. Inf. 34, No. 5, 29-32 (2000)
[15] P. Yu, A.Y.T. Leung, The simplest normal form and its application to bifurcation control, Chaos, Solitons & Fractals, in press. · Zbl 1136.34042 · doi:10.1016/j.chaos.2005.12.051
[16] Zhang, Z. D.; Bi, Q.: Bifurcations of a generalized Camassa -- Holm equation, Int. J. Nonlinear sci. Numer. simul. 6, No. 1, 81-86 (2005)
[17] Zhang, Z. D.; Bi, Q.: Bifurcations of traveling wave solutions in a compound KdV-type equation, Chaos, solitons & fractals 23, No. 4, 1185-1194 (2005) · Zbl 1070.35081 · doi:10.1016/j.chaos.2004.06.013