×

A database of local fields. (English) Zbl 1140.11350

Summary: We describe our database of finite extensions of \(\mathbb Q_p\), and how it can be used to facilitate local analysis of number fields. The main purpose of this paper is to define the invariants contained in the database and explain the methods by which the quantities are computed.
The database is located online at http://math.asu.edu/ jj/localfields/.

MSC:

11S15 Ramification and extension theory
12J25 Non-Archimedean valued fields

Software:

PARI/GP
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Amano, S., Eisenstein equations of degree \(p\) in a \(\mathfrak{p}\)-adic field, J. fac. sci. univ. Tokyo IA, 18, 1-21, (1971) · Zbl 0231.12019
[2] Ash, A.; Pollack, D.; Soares, D., \(\operatorname{SL}_3(\mathbb{F}_2)\)-extensions of \(\mathbb{Q}\) and arithmetic cohomology modulo 2, Experiment. math., 13, 3, 298-307, (2004)
[3] Ash, A., Pollack, D., Sinnott, W., 2004. \(A_6\)-extensions of \(\mathbf{Q}\) and the mod \(p\) cohomology of \(G L(3, \mathbf{Z})\). J. Number Theory (in press)
[4] Bayer, P.; Rio, A., Dyadic exercises for octahedral extensions, J. reine angew. math., 517, 1-17, (1999) · Zbl 0941.12001
[5] Butler, G.; McKay, J., The transitive groups of degree up to eleven, Comm. algebra, 11, 8, 863-911, (1983) · Zbl 0518.20003
[6] Conner, P.E.; Perlis, R., A survey of trace forms of algebraic number fields, () · Zbl 0551.10017
[7] Deligne, P., LES constantes locales de l’équation fonctionnelle de la fonction \(L\) d’artin d’une représentation orthogonale, Invent. math., 35, 299-316, (1976) · Zbl 0337.12012
[8] Epkenhans, M., Trace forms of dyadic number fields, J. number theory, 38, 359-365, (1989) · Zbl 0731.11021
[9] Heath, L.S.; Loehr, N.A., New algorithms for generating Conway polynomials over finite fields, (), 429-437 · Zbl 0934.68133
[10] Jones, J.W.; Roberts, D.P., Sextic number fields with discriminant \((- 1)^j 2^a 3^b\), (), 141-172 · Zbl 0931.11060
[11] Jones, J.W.; Roberts, D.P., Nonic 3-adic fields, (), 293-308 · Zbl 1125.11356
[12] Jones, J.W., Roberts, D.P., Octic 2-adic fields (in preparation) · Zbl 1140.11056
[13] Jones, J.W., Roberts, D.P., Galois number fields with small root discriminant (submitted for publication)
[14] Krasner, M., Remarques au sujet d’une note de J.-P. Serre: une “formule de masse” pour LES extensions totalement ramifiées de degré donné d’un corps local, C. R. acad. sci. Paris Sér. A-B, 288, 18, A863-A865, (1979)
[15] Naito, H., Dihedral extensions of degree 8 over the rational \(p\)-adic fields, Proc. Japan acad. ser. A math. sci., 71, 1, 17-18, (1995) · Zbl 0839.11060
[16] Panayi, P., Computation of Leopoldt’s \(p\)-adic regulator. Ph.D. Thesis, University of East Anglia
[17] PARI2, PARI/GP, version 2.1.6. the PARI group, Bordeaux, (2004), Available from
[18] Pauli, S.; Roblot, X.-F., On the computation of all extensions of a \(p\)-adic field of a given degree, Math. comp., 70, 236, 1641-1659, (2001) · Zbl 0981.11038
[19] Roberts, D.P., Twin sextic algebras, Rocky mountain J. math., 28, 1, 341-368, (1998) · Zbl 0931.12004
[20] Serre, J.-P., Local fields, (1979), Springer Verlag New York
[21] Serre, J.-P., Une formule de masse pour LES extensions totalement ramifiées de degré donné d’un corps local, C. R. acad. sci. Paris Sér. A-B, 286, 22, A1031-A1036, (1978)
[22] Serre, J.-P., L’invariant De Witt de la forme \(\operatorname{Tr}(x^2)\), comment, Math. helv., 59, 4, 651-676, (1984) · Zbl 0565.12014
[23] Tate, J.T., Local constants, (), 89-131, (prepared in collaboration with C.J. Bushnell and M.J. Taylor) · Zbl 0425.12019
[24] Weil, A., Exercices dyadiques, Invent. math., 27, 1-22, (1974) · Zbl 0307.12017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.