Rousseau, Erwan Weak analytic hyperbolicity of complements of generic surfaces of high degree in projective 3-space. (English) Zbl 1140.32013 Osaka J. Math. 44, No. 4, 955-971 (2007). In this paper the author proves that every entire curve in the complement of a generic hypersurface of degree \(d\geq 586\) in \({\mathbb P}^3({\mathbb C})\) is contained in a proper subvariety. This is a weak form of the famous Kobayashi conjecture claiming the Kobayashi hyperbolicity of the complement of a generic hypersurface of degree \(d\geq 2n+1\) in \({\mathbb P}^n({\mathbb C})\). The proof of the main result of this paper is based on the construction of a sufficiently large number of logarithmic jet differentials on the complement of a generic hypersurface in \({\mathbb P}^3({\mathbb C})\). Reviewer: Marco Abate (Pisa) Cited in 5 Documents MSC: 32Q45 Hyperbolic and Kobayashi hyperbolic manifolds 14J70 Hypersurfaces and algebraic geometry Keywords:Kobayashi hyperbolicity; logarithmic jet budles × Cite Format Result Cite Review PDF Full Text: arXiv Euclid References: [1] F.A. Bogomolov: Holomorphic tensors and vector bundles on projective varieties , Math. USSR Izvestija 13 (1979), 499-555. · Zbl 0439.14002 · doi:10.1070/IM1979v013n03ABEH002076 [2] H. Clemens: Curves on generic hypersurfaces , Ann. Sci. École Norm. Sup. (4) 19 (1986), 629-636. · Zbl 0611.14024 [3] J.-P. Demailly: Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials ; in Algebraic Geometry–Santa Cruz 1995, Proc. Sympos. Pure Math. 62 , Amer. Math. Soc., Providence, RI, 1997, 285-360. · Zbl 0919.32014 [4] J.-P. Demailly and J. El Goul: Hyperbolicity of generic surfaces of high degree in projective 3-space , Amer. J. Math. 122 (2000), 515-546. · Zbl 0966.32014 · doi:10.1353/ajm.2000.0019 [5] G.-E. Dethloff and S.S.-Y. Lu: Logarithmic jet bundles and applications , Osaka J. Math. 38 (2001), 185-237. · Zbl 0982.32022 [6] L. Ein: Subvarieties of generic complete intersections , Invent. Math. 94 (1988), 163-169. · Zbl 0701.14002 · doi:10.1007/BF01394349 [7] J. El Goul: Logarithmic jets and hyperbolicity , Osaka J. Math. 40 (2003), 469-491. · Zbl 1048.32016 [8] M. Green and P. Griffiths: Two applications of algebraic geometry to entire holomorphic mappings ; in The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979), Springer, New York, 1980, 41-74. · Zbl 0508.32010 [9] S. Kobayashi: Hyperbolic Manifolds and Holomorphic Mappings, Dekker, New York, 1970. · Zbl 0207.37902 [10] S. Kobayashi: Hyperbolic Complex Spaces, Springer, Berlin, 1998. · Zbl 0917.32019 [11] J. Noguchi: Logarithmic jet spaces and extensions of de Franchis’ theorem ; in Contributions to Several Complex Variables (Conference in Honor of W. Stoll, Notre Dame 1984), Aspects of Math., Vieweg, Braunschweig, 1986, 227-249. · Zbl 0598.32021 [12] G. Pacienza and E. Rousseau: On the logarithmic Kobayashi conjecture , to appear in J. Reine Angew. Math., 2007. · Zbl 1133.32015 [13] M. Paun: Vector fields on the total space of hypersurfaces in the projective space and hyperbolicity , preprint, 2005. · Zbl 1137.32010 · doi:10.1007/s00208-007-0172-5 [14] E. Rousseau: Etude des jets de Demailly-Semple en dimension 3 , Ann. Inst. Fourier (Grenoble) 56 (2006), 397-421. · Zbl 1092.58003 · doi:10.5802/aif.2187 [15] E. Rousseau: Equations différentielles sur les hypersurfaces de \(\mathbb{P}^{4}\) , J. Math. Pures Appl. (9) 86 (2006), 322-341. · Zbl 1115.14009 · doi:10.1016/j.matpur.2006.06.004 [16] E. Rousseau: Weak analytic hyperbolicity of generic hypersurfaces of high degree in \(\mathbb{P}^{4}\) , to appear in Ann. Fac. Sci. Toulouse, 2007. · Zbl 1132.32010 [17] Y.-T. Siu: Hyperbolicity in complex geometry ; in The Legacy of Niels Henrik Abel, Springer, Berlin, 2004, 543-566. · Zbl 1076.32011 [18] C. Voisin: On a conjecture of Clemens on rational curves on hypersurfaces , J. Differential Geom. 44 (1996), 200-213. · Zbl 0883.14022 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.