Potential well method for Cauchy problem of generalized double dispersion equations. (English) Zbl 1140.35011

Summary: We study the Cauchy problem of generalized double dispersion equations \(u_{tt}- u_{xx}- u_{xxtt}+ u_{xxxx}= f(u)_{xx}\), where \(f(u)=|u|^p\), \(p> 1\) or \(u^{2k}\), \(k= 1,2,\dots\). By introducing a family of potential wells we not only get a threshold result of global existence and nonexistence of solutions, but also obtain the invariance of some sets and vacuum isolating of solutions. In addition, the global existence and finite time blow up of solutions for problem with critical initial conditions \(E(0)= d\), \(I(u_0)\geq 0\) or \(I(u_0)< 0\) are proved.


35L75 Higher-order nonlinear hyperbolic equations
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
35L30 Initial value problems for higher-order hyperbolic equations
Full Text: DOI


[2] Samsonov, A. M.; Sokurinskaya, E. V., Energy exchange between nonlinear waves in elastic waveguides and external media, (Nonlinear Waves in Active Media (1989), Springer: Springer Berlin), 99-104 · Zbl 0687.73028
[3] Samsonov, A. M., Nonlinear strain waves in elastic waveguide, (Jeffrey, A.; Engelbrecht, J., Nonlinear Waves in Solids. Nonlinear Waves in Solids, CISM Courses and Lecture, vol. 341 (1994), Springer: Springer Vienna) · Zbl 0806.73018
[4] Boussinesq, J., Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en Communiquant au liquide contenu dans ce cannal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pure Appl., 17, 55-108 (1872) · JFM 04.0493.04
[5] Kano, T.; Nishida, T., A mathematical justification for Korteweg-de Vries equation and Boussinesq equation of water surface waves, Osaka J. Math., 23, 389-413 (1986) · Zbl 0622.76021
[6] Chen, Guowang; Wan, Yanping; Wang, Shubin, Initial boundary value problem of the generalized cubic double dispersion equation, J. Math. Appl., 299, 563-577 (2004) · Zbl 1066.35087
[7] Wang, Shubin; Chen, Guowang, Cauchy problem of the generalized double dispersion equation, Nonlinear Anal., 64, 159-173 (2006) · Zbl 1092.35056
[8] Sattinger, D. H., On global solution of nonlinear hyperbolic equations, Arch. Ration. Mech. Anal., 30, 148-172 (1968) · Zbl 0159.39102
[9] Payne, L. E.; Sattinger, D. H., Sadle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22, 273-303 (1975) · Zbl 0317.35059
[10] Tsutsumi, M., On solutions of semilinear differential equations in a Hilbert space, Math. Japan, 17, 173-193 (1972) · Zbl 0273.34044
[11] Tsutsumi, M., Existence and nonexistence of global solutions for nonlinear parabolic equations, Publ. RTMS, 8, 211-229 (1972/1973) · Zbl 0248.35074
[12] Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires (1969), Dunod Gauthier-Villars: Dunod Gauthier-Villars Paris · Zbl 0189.40603
[13] Ikehata, R., Some remarks on the wave equations with nonlinear damping and source terms, Nonlinear Anal., 27, 1165-1175 (1996) · Zbl 0866.35071
[14] Nakao, M.; Ono, K., Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations, Math. Z., 214, 2, 325-342 (1993) · Zbl 0790.35072
[15] Cavalcanti, Marcelo M.; Domingos Cavalcanti, Valéria N., Existence and asymptotic stability for evolution problems on manifolds with damping and source terms, J. Math. Anal. Appl., 291, 109-127 (2004) · Zbl 1073.35168
[16] Cavalcanti, Marcelo M.; Domingos Cavalcanti, Valéria N.; Martinez, Patrick, Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term, J. Differential Equations, 203, 119-158 (2004) · Zbl 1049.35047
[17] Zhang, J., On the standing wave in coupled non-linear Klein-Gordon equations, Math. Methods Appl. Sci., 26, 1, 11-25 (2003) · Zbl 1034.35080
[18] Vitillaro, E., A potential well theory for the wave equation with nonlinear source and boundary damping terms, Glasgow Math. J., 44, 3, 375-395 (2002) · Zbl 1016.35048
[19] Ono, K., On global existence, asymptotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff type with a strong dissipation, Math. Methods Appl. Sci., 20, 2, 151-177 (1997) · Zbl 0878.35081
[20] Esquivel-Avila, Jorge A., Qualitative analysis of a nonlinear wave equation, Discrete Contin. Dyn. Syst., 10, 3, 787-804 (2004) · Zbl 1047.35103
[21] Esquivel-Avila, Jorge A., The dynamics of a nonlinear wave equation, J. Math. Anal. Appl., 279, 135-150 (2003) · Zbl 1015.35072
[22] Esquivel-Avila, Jorge A., A characterization of global and nonglobal solutions of nonlinear wave and Kirchhoff equations, Nonlinear Anal., 52, 1111-1127 (2003) · Zbl 1023.35076
[23] Gazzola, Filippo; Squassina, Marco, Global solutions and finite time blow up for damped semilinear wave equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23, 185-207 (2006) · Zbl 1094.35082
[24] Liu, L.; Wang, M., Global solutions and blow-up of solutions for some hyperbolic systems with damping and source terms, Nonlinear Anal., 64, 69-91 (2006) · Zbl 1082.35100
[25] Gan, Zaihui; Zhang, Jian, Instability of standing waves for Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions, J. Math. Anal. Appl., 307, 219-231 (2005) · Zbl 1068.35066
[26] Cavalcanti, Marcelo M.; Domingos Cavalcanti, Valéria N., Existence and asymptotic stability for evolution problems on manifolds with damping and source terms, J. Math. Anal. Appl., 291, 109-127 (2004) · Zbl 1073.35168
[27] Liu, Yacheng, On potential wells and vacuum isolating of solutions for semilinear wave equations, J. Differential Equations, 192, 155-169 (2003) · Zbl 1024.35078
[28] Liu, Yacheng; Zhao, Junsheng, Multidimensional viscoelasticity equations with nonlinear damping and source terms, Nonlinear Anal., 56, 851-865 (2004) · Zbl 1057.74007
[29] Liu, Yacheng; Zhao, Junsheng, Nonlinear parabolic equations with critical initial conditions \(J(u_0) = d\) or \(I(u_0) = 0\), Nonlinear Anal., 58, 873-883 (2004) · Zbl 1059.35064
[30] Liu, Yacheng; Zhao, Junsheng, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 64, 2665-2687 (2006) · Zbl 1096.35089
[31] Yang, Zhijian, Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equations with dissipative term, J. Differential Equations, 187, 520-540 (2003) · Zbl 1030.35125
[32] Esquivel-Avila, Jorge A., Dynamics around the ground state of a nonlinear evolution equation, Nonlinear Anal., 63, 5-7, 331-343 (2005) · Zbl 1159.35390
[33] Yue, Liu, Instability and blow-up of solutions to a generalized Boussinesq equation, SIAM J. Math. Anal., 26, 1527-1546 (1995) · Zbl 0857.35103
[34] Yang, Zhijian, Cauchy problem for a class of nonlinear dispersive wave equations arising in elasto-plastic flow, J. Math. Anal. Appl., 313, 197-217 (2006) · Zbl 1091.35103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.