zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation. (English) Zbl 1140.60032
This paper deals with stochastic differential equation $dN(t)=N(t)[(a(t)-b(t)N(t))dt+\alpha(t)dB(t)]$, where $B(t)$ is the one-dimensional standard Brownian motion, $N(0)=N\sb{0}>0$. It is assumed that $a(t),b(t),\alpha(t)$ are continuous $T$-periodic functions, $a(t)>0$, $b(t)>0$ and $\min\sb{t\in [0,T]}a(t)>\max\sb{t\in[0,T]}\alpha\sp2(t)$. The authors show that considered equation is stochastically permanent and the positive solution $N\sb{p}(t)$ is globally attractive. The similar results for a generalized non-autonomous logistic equation $dN(t)=N(t)[(a(t)-b(t)N\sp{\theta}(t))dt+\alpha(t)dB(t)]$, where $\theta>0$ is an odd number, are presented.

60H10Stochastic ordinary differential equations
Full Text: DOI
[1] May, R. M.: Stability and complexity in model ecosystems, (1973)
[2] Globalism, K.: Stability and oscillations in delay differential equations of population dynamics, (1992) · Zbl 0752.34039
[3] Fan, M.; Wang, K.: Optimal harvesting policy for single population with periodic coefficients, Math. biosci. 152, 165-177 (1998) · Zbl 0940.92030 · doi:10.1016/S0025-5564(98)10024-X
[4] Burton, T. A.: Volterra integral and differential equations, (1983) · Zbl 0515.45001
[5] Eisen, M.: Mathematical models in cell biology and cancer chemotherapy, Lecture notes in biomathematics 30 (1979) · Zbl 0414.92005
[6] Swan, G. W.: Optimization of human cancer radiotherapy, Lecture notes in biomathematics 42 (1981) · Zbl 0464.92002
[7] Michelson, S.; Miller, B. E.; Glicksman, A. S.; Leith, J. T.: Tumor micro-ecology and competitive interactions, J. theoret. Biol. 128, No. 2, 233-246 (1987)
[8] Michelson, S.; Leith, J. T.: Dormancy, regression and recurrence: towards a unifying theory of tumor growth control, J. theoret. Biol. 169, No. 4, 327-338 (1994)
[9] Krebs, C. J.: Ecology: the experimental analysis of distribution and abundance, (2001)
[10] Mao, X.; Marion, G.; Renshaw, E.: Environmental Brownian noise suppresses explosions in population dynamics, Stochastic process. Appl. 97, 95-110 (2002) · Zbl 1058.60046 · doi:10.1016/S0304-4149(01)00126-0
[11] Arnold, L.: Stochastic differential equations: theory and applications, (1972) · Zbl 0216.45001
[12] Freedman, A.: Stochastic differential equations and their applications, vol. 2, (1976) · Zbl 0346.15003
[13] Jiang, D. Q.; Shi, N. Z.: A note on non-autonomous logistic equation with random perturbation, J. math. Anal. appl. 303, 164-172 (2005) · Zbl 1076.34062 · doi:10.1016/j.jmaa.2004.08.027
[14] Mao, X.: Stochastic versions of the lassalle theorem, J. differential equations 153, 175-195 (1999) · Zbl 0921.34057
[15] Karatzas, I.; Shreve, S. E.: Brownian motion and stochastic calculus, (1991) · Zbl 0734.60060
[16] Friedman, A.: Stochastic differential equations and their applications, (1976) · Zbl 0323.60057
[17] Mao, X.: Stochastic differential equations and applications, (1997) · Zbl 0892.60057
[18] Barbǎlat, I.: Systems d’equations differential d’oscillations nonlineairies, Rev. roumaine math. Pures appl. 4, 267-270 (1959)
[19] Gilpin, M. E.; Ayala, F. G.: Global models of growth and competition, Proc. natl. Acad. sci. USA 70, 3590-3593 (1973) · Zbl 0272.92016 · doi:10.1073/pnas.70.12.3590
[20] Gilpin, M. E.; Ayala, F. G.: Schooner’s model and drosophila competition, Theoret. population biol. 9, 12-14 (1976)