×

A new characterization of geometric distribution. (English) Zbl 1140.62307

Summary: A characterization of geometric distributions is given, which is based on the ratio of the real and imaginary part of the characteristic function.

MSC:

62E10 Characterization and structure theory of statistical distributions
60E10 Characteristic functions; other transforms
PDF BibTeX XML Cite
Full Text: EuDML Link

References:

[1] Arnold B. C.: Two characterizations of the geometric distribution. J. Appl. Probab. 17 (1980), 570-573 · Zbl 0428.60017
[2] Bary N. K.: A Treatise on Trigonometric Series. Pergamon Press, Oxford 1964 · Zbl 0129.28002
[3] Crawford G. B.: Characterization of geometric and exponential distributions. Ann. Math. Statist. 37 (1966), 1790-1795 · Zbl 0144.42303
[4] El-Neweihi E., Govindarajulu Z.: Characterizations of geometric distributions and discrete IFR (DFR) distributions using order statistics. J. Statist. Plann. Inf. 3 (1979), 85-90 · Zbl 0399.62009
[5] Ferguson T. S.: A characterization of the geometric distribution. Amer. Math. Monthly 71 (1965), 256-260 · Zbl 0127.10705
[6] Ferguson T. S.: On characterizing distributions by properties of order statistics. Sankhya Series A 20 (1967), 265-278 · Zbl 0155.27302
[7] Ferguson T. S.: On a Rao-Shanbhag characterization of the exponential/geometric distribution. Sankhya Series A 64 (2002), 247-255 · Zbl 1192.62033
[8] Fosam E. B., Shanbhag D. N.: Certain characterizations of exponential and geometric distributions. J. Royal Statist. Soc. Series B 56 (1994), 157-160 · Zbl 0788.62016
[9] (1975) J. Galambos: Characterizations of probability distributions by properties of order statistics. Statistical Distributions in Scientific Work, Vol. 2: Characterizations and Appplications (G. P. Patil, S. Kotz, and J. K. Ord, D. Reidel, Boston 1975, II, pp. 89-101
[10] Henze N., Meintanis S. G.: Goodness-of-fit tests based on a new characterization of the exponential distribution. Commun. Statist. - Theory and Methods 31 (2002), 1479-1497 · Zbl 1008.62043
[11] Hitha N., Nair U. N.: Characterization of some discrete models by properties of residual life function. Cal. Statist. Assoc. Bulletin 38 (1989), 219-223 · Zbl 0715.62023
[12] Kalbfleish J. D., Prentice R. L.: The Statistical Analysis of Failure Time Data. Wiley, New York 1980 · Zbl 0504.62096
[13] Meintanis S. G., Iliopoulos G.: Characterizations of the exponential distribution based on certain properties of its characteristic function. Kybernetika 39 (2003), 295-298 · Zbl 1249.60020
[14] Rainville E. D.: Infinite Series. The Macmillan Company, New York 1967 · Zbl 0173.05702
[15] Rao B. L. S. P., Sreehari M.: On some properties of geometric distribution. Sankhya Series A 42 (1980), 120-122 · Zbl 0487.60019
[16] Rogers G. S.: An alternate proof of the characterization of the density \(Ax^{B}\). Amer. Math. Monthly 70 (1963), 857-858 · Zbl 0115.14201
[17] Roy D., Gupta R. P.: Stochastic modeling through reliability measures in the discrete case. Statist. Probab. Letters 43 (1999), 197-206 · Zbl 0927.62052
[18] Srivastava R. C.: Two characterizations of the geometric distribution. J. Amer. Statist. Assoc. 69 (1974), 267-269 · Zbl 0311.60012
[19] Xekalaki E.: Hazard function and life distributions in discrete time. Commun. Statist. - Theory and Methods 12 (1983), 2503-2509 · Zbl 0552.62008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.