zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Continuous methods for symmetric generalized eigenvalue problems. (English) Zbl 1140.65029
The authors consider generalized eigenvalue problems $Ax = \lambda Bx$, where $A$, $B$ are symmetric real $n \times n$ matrices and $B$ is positive semi-definite. At first the existence of solutions of the generalized eigenvalue problem is discussed. Then some conditions are formulated under which the generalized eigenvalue problem can be reduced to a standard eigenvalue problem. The computation of the minimal eigenvalue and the corresponding eigenvector is discussed. Optimization problems are given which are equivalent to the eigenvalue problems. For finding the eigenvector a continuous method is presented. This method includes a merit function and a system of ordinary differential equations (ODE system). It is shown that the solution of the ODE system converges to an eigenvector. Conditions are given under which this is the eigenvector corresponding to the minimal eigenvalue of the generalized eigenvalue problem. Then, the presented approach is extended to the computation of the $k$th generalized eigenvalue and the corresponding eigenvector. The numerical experiments presented confirm the theoretical results.

65F15Eigenvalues, eigenvectors (numerical linear algebra)
65L15Eigenvalue problems for ODE (numerical methods)
Full Text: DOI
[1] Auchmuty, G.: Globally and rapidly convergent algorithms for symmetric eigenproblems, SIAM J. Matrix anal. Appl. 12, No. 4, 690-760 (1991) · Zbl 0736.65021 · doi:10.1137/0612053
[2] Chu, M. T.: On the continuous realization of iterative processes, SIAM rev. 30, 375-387 (1988) · Zbl 0657.65075 · doi:10.1137/1030090
[3] Chu, M. T.: Matrix differential equations: A continuous realization process for linear algebra problems, Nonlinear anal. Theory methods appl. 18, 1125-1146 (1992) · Zbl 0773.34007 · doi:10.1016/0362-546X(92)90157-A
[4] Cichocki, A.; Unbehauen, R.: Neural networks for computing eigenvalues and eigenvectors, Biol. cyber. 68, 155-164 (1992) · Zbl 0769.65015 · doi:10.1007/BF00201437
[5] Fukushima, M.: Equivalent differentiable optimization problems and descent method for asymmetric variational inequality problems, Math. prog. 53, 99-110 (1992) · Zbl 0756.90081 · doi:10.1007/BF01585696
[6] Gander, W.; Golub, G. H.; Matt, U.: A constrained eigenvalue problem, Linear algebra appl. 114/115, 815-839 (1989) · Zbl 0666.15006 · doi:10.1016/0024-3795(89)90494-1
[7] Golub, G. H.; Liao, L. -Z.: Continuous methods for extreme and interior eigenvalue problems, Linear algebra appl. 415, 31-51 (2006) · Zbl 1092.65029 · doi:10.1016/j.laa.2005.01.009
[8] Golub, G. H.; Van Loan, C. F.: Matrix computation, (1996) · Zbl 0865.65009
[9] Golub, G. H.; Van Der Vorst, H. A.: Eigenvalue computation in the 20th century, Jcam 123, 35-65 (2000) · Zbl 0965.65057 · doi:10.1016/S0377-0427(00)00413-1
[10] Golub, G. H.; Zhang, Z. Y.; Zhang, H. Y.: Large sparse symmetric eigenvalue problems with homogeneous linear constraints: the Lanczos process with inner -- outer iterations, Linear algebra appl. 309, 289-306 (2000) · Zbl 0948.65033 · doi:10.1016/S0024-3795(99)00204-9
[11] Golub, G. H.; Ye, Q.: An inverse free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems, SIAM J. Sci. comput. 24, No. 1, 312-334 (2002) · Zbl 1016.65017 · doi:10.1137/S1064827500382579
[12] He, B. S.: Inexact implicit methods for monotone general variational inequalities, Math. prog. 86, 199-217 (1999) · Zbl 0979.49006 · doi:10.1007/s101070050086
[13] Ionescu, V.; Oară, C.; Weis, M.: Generalized Riccati theory and robust control, (1999) · Zbl 0915.34024
[14] Jiang, Y. L.; Chen, R. M. M.: Dynamic equations of generalized eigenvalue problems, IEICE trans. Fundamentals 85-A, No. 8, 1974-1978 (2002)
[15] Kinderlehrer, D.; Stampacchia, G.: An introduction to variational inequalities and their applications, (1980) · Zbl 0457.35001
[16] Knyazev, A. V.; Neymeyr, K.: A geometric theory for preconditioned inverse iteration III: A short and short convergence estimate for generalized eigenvalue problems, Linear algebra appl. 358, 95-114 (2003) · Zbl 1037.65039 · doi:10.1016/S0024-3795(01)00461-X
[17] Liao, L. -Z.; Qi, H. D.; Qi, L. Q.: Neurodynamical optimization, J. global optim. 28, 175-195 (2004) · Zbl 1058.90062 · doi:10.1023/B:JOGO.0000015310.27011.02
[18] Mongeau, M.; Torki, M.: Computing eigenelements of real symmetric matrices via optimization, Comput. optim. Appl. 29, 263-287 (2004) · Zbl 1062.90071 · doi:10.1023/B:COAP.0000044182.33308.82
[19] Saad, Y.: Numerical methods for large eigenvalue problems, (1992) · Zbl 0991.65039
[20] Parlett, B. N.: The symmetric eigenvalue problem, (1980) · Zbl 0431.65017
[21] Stewart, G. W.: Error and perturbation bounds for subspaces associated with certain eigenvalue problems, SIAM rev. 15, 727-764 (1973) · Zbl 0297.65030 · doi:10.1137/1015095
[22] Tisseur, F.: Newton’s method in floating point arithmetic and iterative refinement of generalized eigenvalue problems, SIAM J. Matrix anal. Appl. 22, No. 4, 1038-1057 (2001) · Zbl 0982.65040 · doi:10.1137/S0895479899359837
[23] H.A. van der Vorst, G.H. Golub, 150 years old and still alive: Eigenproblems, The state of the art in numerical analysis, I.S. Duff (ed.), (1997), pp. 93 -- 119. · Zbl 0881.65026
[24] Wang, S. G.; Zhao, S. Q.: An algorithm for $Ax=\lambda $Bx with symmetric and positive-definite A and B, SIAM J. Matrix anal. Appl. 12, No. 4, 654-660 (1991) · Zbl 0738.65034 · doi:10.1137/0612050
[25] Zhang, T.; Law, K. H.; Golub, G. H.: On the homotopy method for perturbed symmetric generalized eigenvalue problems, SIAM J. Sci. comput. 19, No. 5, 1625-1645 (1998) · Zbl 0917.65035 · doi:10.1137/S1064827596299755