×

zbMATH — the first resource for mathematics

A posteriori error estimates for the Steklov eigenvalue problem. (English) Zbl 1140.65078
The authors are concerned with the linear finite element approximations of the so called Steklov eigenvalue problem. They introduce and analyze an a posteriori error estimator of the residual type. They prove that the edge residuals dominate the other part of this estimator and consequently introduce a simplified indicator by omitting the volumetric part in the residual error estimator.

MSC:
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35P15 Estimates of eigenvalues in context of PDEs
PDF BibTeX XML Cite
Full Text: DOI Link
References:
[1] Andreev, A.B.; Hristov, A.H., On the variational aspects for elliptic problems with parameter on the boundary, (), 587-593 · Zbl 0980.65121
[2] Andreev, A.B.; Todorov, T.D., Isoparametric finite-element approximation of a Steklov eigenvalue problem, IMA J. numer. anal., 24, 309-322, (2004) · Zbl 1069.65120
[3] Ainsworth, M.; Oden, J.T., A posteriori error estimation in finite element analysis, (2000), Wiley New York · Zbl 1008.65076
[4] Armentano, M.G., The effect of reduced integration in the Steklov eigenvalue problem, Math. mod. numer. anal. (M^{2}AN), 38, 1, 27-36, (2004) · Zbl 1077.65115
[5] Babuška, I.; Miller, A., A feedback finite element method with a posteriori error estimation. part I: the finite element method and some basic properties of the a posteriori error estimator, Comp. meth. appl. mech. engrg., 61, 1-40, (1987) · Zbl 0593.65064
[6] Babuška, I.; Osborn, J., Eigenvalue problems, (), 640-787 · Zbl 0875.65087
[7] Bergmann, S.; Schiffer, M., Kernel functions and elliptic differential equations in mathematical physics, (1953), Academic Press New York
[8] Bermúdez, A.; Durán, R.; Rodríguez, R., Finite element solution of incompressible fluid – structure vibration problems, Internat. J. numer. meth. eng., 40, 1435-1448, (1997)
[9] Bermúdez, A.; Rodríguez, R.; Santamarina, D., A finite element solution of an added mass formulation for coupled fluid – solid vibrations, Numer. math., 87, 201-227, (2000) · Zbl 0998.76046
[10] Carstensen, C.; Verfürth, R., Edge residuals dominate a posteriori error estimates for low order finite element methods, SIAM J. numer. anal., 36, 1571-1587, (1999) · Zbl 0938.65124
[11] Ciarlet, P., The finite element method for elliptic problems, (1978), North-Holland Amsterdam
[12] Conca, C.; Planchard, J.; Vanninathan, M., Fluid and periodic structures, (1995), John Wiley & Sons New York · Zbl 0910.76002
[13] Durán, R.G.; Padra, C.; Rodríguez, R., A posteriori error estimates for the finite element approximation of eigenvalue problems, Math. mod. & met. appl. sci. (M^{3}AS), 13, 8, 1219-1229, (2003) · Zbl 1072.65144
[14] Durán, R.G.; Gastaldi, L.; Padra, C., A posteriori error estimators for mixed approximations of eigenvalue problems, Math. mod. & met. appl. sci. (M^{3}AS), 9, 8, 1165-1178, (1999) · Zbl 1012.65112
[15] Grisvard, P., Elliptic problems in nonsmooth domain, (1985), Pitman Boston · Zbl 0695.35060
[16] Larson, M.G., A posteriori and a priori error analysis for finite elements approximations of self-adjoint elliptic eigenvalue problems, SIAM J. numer. anal., 38, 608-625, (2000) · Zbl 0974.65100
[17] Morand, H.J.P.; Ohayon, R., Fluid-structure interaction: applied numerical methods, (1995), John Wiley & Sons New York
[18] Nochetto, R., Pointwise a posteriori error estimates for elliptic problems on highly graded meshes, Math. comp., 64, 1-22, (1995) · Zbl 0920.65063
[19] Rodríguez, R., Some remarks on zienkiewicz – zhu estimator, Numer. meth. PDE, 10, 625-635, (1994) · Zbl 0806.73069
[20] Verfürth, R., A review of A posteriori error estimation and adaptive mesh-refinement techniques, (1996), Wiley & Teubner New York · Zbl 0853.65108
[21] Verfürth, R., A posteriori error estimates for nonlinear problems, Math. comp., 62, 445-475, (1989) · Zbl 0799.65112
[22] Weinberger, H.F., Variational methods for eigenvalue approximation, (1974), SIAM Philadelphia, PA · Zbl 0296.49033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.