zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Artificial intelligence techniques: An introduction to their use for modelling environmental systems. (English) Zbl 1140.68507
Summary: Knowledge-based or Artificial Intelligence techniques are used increasingly as alternatives to more classical techniques to model environmental systems. We review some of them and their environmental applicability, with examples and a reference list. The techniques covered are case-based reasoning, rule-based systems, artificial neural networks, fuzzy models, genetic algorithms, cellular automata, multi-agent systems, swarm intelligence, reinforcement learning and hybrid systems.

68T99Artificial intelligence
68Q80Cellular automata (theory of computing)
Full Text: DOI
[1] Aamodt, A.; Plaza, E.: Case-based reasoning: foundational issues, methodological variations, and system approaches, AI commun. 7, 35-59 (1994)
[2] Abbaspour, K. C.; Schulin, R.; Van Genuchten, M. T.: Estimating unsaturated soil hydraulic parameters using ant colony optimization, Adv. water resour. 24, 827-841 (2001)
[3] P. Abbeel, M. Quigley, A.Y. Ng, Using Inaccurate Models in Reinforcement Learning, http://ai.stanford.edu/∼ang/papers/icml06-usinginaccuratemodelsinrl.pdf, 2006.
[4] Abolpour, B.; Javan, M.; Karamouz, M.: Water allocation improvement in river basin using adaptive neural fuzzy reinforcement learning approach, Appl. soft comput. 7, 265-285 (2007)
[5] Adya, M.; Collopy, F.: How effective are neural networks at forecasting and prediction? A review and evaluation, J. forecasting 17, 481-495 (1998)
[6] Afshar, M. H.: Improving the efficiency of ant algorithms using adaptive refinement: application to storm water network design, Adv. water resour. 29, 1371-1382 (2006)
[7] Agirre-Basurko, E.; Ibarra-Berastegi, G.; Madariaga, I.: Regression and multilayer perceptron-based models to forecast hourly O3 and NO2 levels in the Bilbao area, Environ. modell. Softw. 21, 430-446 (2006)
[8] Almasri, M. N.; Kaluarachchi, J. J.: Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data, Environ. modell. Softw. 20, 851-871 (2005)
[9] Avesani, P.; Perini, A.; Ricci, F.: Interactive case-based planning for forest fire management, Appl. intell. 13, 41-57 (2000)
[10] Bandini, S.; Pavesi, G.: Simulation of vegetable population dynamics based on cellular automata, , 202-209 (2002) · Zbl 1027.92507 · http://link.springer.de/link/service/series/0558/bibs/2493/24930202.htm
[11] Bardossy, A.; Bronstert, A.; Merz, B.: 1-, 2- and 3-dimensional modelling of water movement in the unsaturated soil matrix using a fuzzy approach, Adv. water resour. 18, 237-251 (1995)
[12] Barletta, R.: An introduction to case-based reasoning, AI expert 6, 42-49 (1991)
[13] Barreteau, O.; Bousquet, F.; Millier, C.; Weber, J.: Suitability of multi-agent simulations to study irrigated system viability: application to case studies in the senegal river valley, Agric. syst. 80, 255-275 (2004)
[14] D. Batten, Are some human ecosystems self-defeating? Environ. Modell. Softw., in press.
[15] Bazartseren, B.; Hildebrandt, G.; Holz, K. P.: Short-term water level prediction using neural networks and neuro-fuzzy approach, Neurocomputing 55, 439-450 (2003)
[16] Becu, N.; Perez, P.; Walker, A.; Barreteau, O.; Le Page, C.: Agent based simulation of a small catchment water management in northern Thailand description of the CATCHSCAPE model, Ecol. model. 170, 319-331 (2003)
[17] Berger, T.: Agent-based spatial models applied to agriculture: a simulation tool for technology diffusion, resource use changes and policy analysis, Agric. econ. 25, 245-260 (2001)
[18] Bonabeau, E.; Dorigo, M.; Theraulaz, G.: Swarm intelligence: from natural to artificial systems, (1999) · Zbl 1003.68123
[19] Bone, C.; Dragicevic, S.; Roberts, A.: A fuzzy-constrained cellular automata model of forest insect infestations, Ecol. model. 192, 107-125 (2006)
[20] Borri, D.; Camarda, D.; De Liddo, A.: Mobility in environmental planning: an integrated multi-agent approach, Lect. notes comput. Sci. 3675, 119-129 (2005)
[21] Borsuk, Environ. Modell. Softw., in preparation.
[22] Bousquet, F.; Le Page, C.: Multi-agent simulations and ecosystem management: a review, Ecol. model. 176, 313-332 (2004)
[23] Brown, I.: Modelling future landscape change on coastal floodplains using a rule-based GIS, Environ. modell. Softw. 21, 1479-1490 (2006)
[24] Buckeles, B. P.; Petry, F. E.: Genetic algorithms, (1992)
[25] Bullnheimer, B.; Hartl, R. F.; Strauss, C.: An improved ant system algorithm for the vehicle routing problem, Ann. oper. Res. 89, 319-328 (1999) · Zbl 0937.90125 · doi:10.1023/A:1018940026670
[26] , Artificial intelligence techniques: A comprehensive catalogue (1997)
[27] Ceccaroni, L.; Cortes, U.; Sanchez-Marre, M.: Ontowedss: augmenting environmental decision-support systems with ontologies, Environ. modell. Softw. 19, 785-797 (2004)
[28] Chang, C. L.; Lo, S. L.; Yu, S. L.: Applying fuzzy theory and genetic algorithm to interpolate precipitation, J. hydrol. 314, 92-104 (2005)
[29] Chau, K. W.: A split-step PSO algorithm in prediction of water quality pollution, Lect. notes comput. Sci. 3498, 1034-1039 (2005) · Zbl 1084.68563 · doi:10.1007/b136479
[30] Chau, K. W.: Particle swarm optimization training algorithm for anns in stage prediction of shing mun river, J. hydrol. 329, 363-367 (2006)
[31] Chen, Q.; Mynett, A. E.: Modelling algal blooms in the Dutch coastal waters by integrated numerical and fuzzy cellular automata approaches, Ecol. model. 199, 73-81 (2006)
[32] Cheng, C. T.; Ou, C. P.; Chau, K. W.: Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall-runoff model calibration, J. hydrol. 268, 72-86 (2002)
[33] Cigizoglu, H. K.; Alp, M.: Generalized regression neural network in modelling river sediment yield, Adv. eng. Softw. 37, 63-68 (2006)
[34] Codd, E. F.: Cellular automata, ACM monograph series, (1968) · Zbl 0213.18301
[35] Coelho, J. P.; De Moura Oliveira, P. B.; Cunha, J. Boaventura: Greenhouse air temperature predictive control using the particle swarm optimisation algorithm, Comput. electron. Agric. 49, 330-344 (2005)
[36] Cordón, O.; De Viana, I. Fernández; Herrera, F.: Analysis of the best-worst ant systems and its variants on the QAP, Lect. notes comput. Sci. 2463, 228-234 (2002) · Zbl 1107.90430
[37] Crisci, G. M.; Di Gregorio, S.; Nicoletta, F.; Rongo, R.; Spataro, W.: Analysing lava risk for the etnean area: simulation by cellular automata methods, Nat. hazards 20, 215-229 (1999)
[38] Crowe, A. M.; Mcclean, C. J.; Cresser, M. S.: An application of genetic algorithms to the robust estimation of soil organic and mineral fraction densities, Environ. modell. Softw. 21, 1503-1507 (2006)
[39] D’ambrosio, D.; Di Gregorio, S.; Iovine, G.; Lupiano, V.; Rongo, R.; Spataro, W.: Modelling surface flows for macroscopic phenomena by cellular automata: an application to debris flows, Lect. notes comput. Sci. 2493, 304-314 (2002) · Zbl 1027.68625 · http://link.springer.de/link/service/series/0558/bibs/2493/24930304.htm
[40] Denby, B.; Le Hégarat-Mascleb, S.: Swarm intelligence in optimisation problems, Nucl. instrum. Meth. A 502, 364-368 (2003)
[41] Dhar, V.; Stein, R.: Intelligent decision support methods. The science of knowledge work, (1997)
[42] Di Caro, G.; Dorigo, M.: Antnet: distributed stigmergetic control for communications networks, J. artif. Intell. res. 9, 317-365 (1998) · Zbl 0910.68182 · http://www.jair.org/contents/v9.html
[43] Dixon, B.: Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis, J. hydrol. 309, 17-38 (2005)
[44] A.V. Donati, R. Montemanni, N. Casagrande, A.E. Rizzoli, L.M. Gambardella, Time dependent vehicle routing problem with a multi ant colony system, Eur. J. Oper. Res., in press. · Zbl 1146.90328
[45] Dorigo, M.; Gambardella, L. M.: Ant colony system: a cooperative learning approach to the traveling salesman problem, IEEE trans. Evol. comput. 1, 53-66 (1997)
[46] Dorigo, M.; Bonabeau, E.; Theraulaz, G.: Ant algorithms and stigmergy, Future gener. Comp. syst. 16, 851-871 (2000)
[47] Dorigo, M.; Maniezzo, V.; Colorni, A.: Ant system: optimization by a colony of cooperating agents, IEEE trans. Syst. man cybern. B 26, 29-41 (1996)
[48] Dou, C.; Woldt, W.; Bogardi, I.: Fuzzy rule based approach to describe solute transport in the unsaturated zone, J. hydrol. 220, 74-85 (1999)
[49] G. Dounias, Hybrid Computational Intelligence in Medicine, http://www.cs.queensu.ca/home/cisc875/Dounias_paper.pdf, 2003.
[50] Dreyfus-Leon, M. J.: Individual-based modelling of fishermen search behaviour with neural networks and reinforcement learning, Ecol. model. 120, 287-297 (1999)
[51] Droz, M.; P&eogon, A.; Kalski: Dynamics of populations in extended systems, Lect. notes comput. Sci. 2493, 190-201 (2002) · Zbl 1027.92509
[52] El-Azhary, E.; Hassan, H. A.; Rafea, A.: Pest control expert system for tomato (PCEST), Knowl. inform. Syst. 2, 242-257 (2000) · Zbl 1002.68605 · doi:10.1007/s101150050013
[53] Elbeltagi, E.; Hegazy, T.; Grierson, D.: Comparison among five evolutionary-based optimization algorithms, Adv. eng. Inform. 19, 43-53 (2005)
[54] El Yacoubi, S.; El Jai, A.: Cellular automata modelling and spreadability, Math. comput. Model. 36, 1059-1074 (2002) · Zbl 1074.68579 · doi:10.1016/S0895-7177(02)00259-5
[55] El Yacoubi, S.; El Jai, A.; Jacewicz, P.; Pausas, J. G.: Lucas: an original tool for landscape modelling, Environ. modell. Softw. 18, 429-437 (2003)
[56] R.S. Engelmore, E. Feigenbaum, Expert systems and artificial intelligence, in: Knowledge-Based Systems in Japan, http://www.wtec.org/loyola/kb/, 1993.
[57] Fdez-Riverola, F.; Corchado, J. M.: Improved CBR system for biological forecasting, EOAI, workshop 23, binding environmental sciences and artificial intelligence, (2004)
[58] Fila, G.; Donatelli, M.; Bellocchi, G.: Ptfindicator: an IRENE DLL-based application to evaluate estimates from pedotransfer functions by integrated indices, Environ. modell. Softw. 21, 107-110 (2006)
[59] Fleming, G.; Van Der Merwe, M.; Mcferren, G.: Fuzzy expert systems and GIS for cholera health risk prediction in southern africa, Environ. modell. Softw. 22, 442-448 (2007)
[60] R.A. Flores-Mendez, Towards a standardization of multi-agent system frameworks, ACM Crossroads 5, http://www.acm.org/crossroads/xrds5-4/multiagent.html, 1999.
[61] Folino, G.; Mendicino, G.; Senatore, A.; Spezzano, G.; Straface, S.: A model based on cellular automata for the parallel simulation of 3D unsaturated flow, Parallel comput. 32, 357-376 (2006)
[62] Fonstad, M. A.: Cellular automata as analysis and synthesis engines at the geomorphology -- ecology interface, Geomorphology 77, 217-234 (2006)
[63] Forrest, S.: Genetic algorithms: principles of natural selection applied to computation, Science 261, 872-878 (1993)
[64] Fuller, R.: Introduction to neuro-fuzzy systems, (2000)
[65] I.G. Georgoudas, G.C. Sirakoulis, E.M. Scordilis, I. Andreadis, A cellular automaton simulation tool for modelling seismicity in the region of Xanthi, Environ. Modell. Softw., in press.
[66] Gill, M. K.; Kaheil, Y. H.; Khalil, A.; Mckee, M.; Bastidas, L.: Multiobjective particle swarm optimization for parameter estimation in hydrology, Water resour. Res. 42, W07417 (2006)
[67] Goldberg, D. E.: Genetic algorithms in search, optimization and machine learning, (1989) · Zbl 0721.68056
[68] Goles, E.; Martinez, S.: Neural and automata networks --- dynamic behavior and applications, (1990)
[69] A. Gray, R. Kilgour, Frequently Asked Questions: Hybrid Systems, http://www.cecs.missouri.edu/∼rsun/hybrid-FAQ.html, 1997.
[70] Gross, J. E.; Mcallister, R. R. J.; Abel, N.; Smith, D. M. Stafford; Maru, Y.: Australian rangelands as complex adaptive systems: a conceptual model and preliminary results, Environ. modell. Softw. 21, 1264-1272 (2006)
[71] Hammerstrom, D.: Working with neural networks, IEEE spectrum, No. July, 46-53 (1993)
[72] Hare, M.; Deadman, P.: Further towards a taxonomy of agent-based simulation models in environmental management, Math. comput. Simul. 64, 25-40 (2004) · Zbl 1031.92036 · doi:10.1016/S0378-4754(03)00118-6
[73] M.E. Harmon, S.S. Harmon, Reinforcement Learning: A Tutorial, http://www.nbu.bg/cogs/events/2000/Readings/Petrov/rltutorial.pdf, 2000.
[74] Hayes-Roth, F.: Rule-based systems, Commun. ACM 28, 921-932 (1985)
[75] L. Hernandez Encinas, S. Hoya White, A. Martin del Rey, G. Rodriguez Sanchez, Modelling forest fire spread using hexagonal cellular automata, Appl. Math. Model., in press. · Zbl 1146.37013
[76] J.H. Holland, Genetic Algorithms, http://www.econ.iastate.edu/tesfatsi/holland.GAIntro.htm, 2005.
[77] Huang, S. H.; Zhang, H. C.: Neural-expert hybrid approach for intelligent manufacturing: a survey, Comput. ind. 26, 107-126 (1995)
[78] Iliadis, L. S.: A decision support system applying an integrated fuzzy model for long-term forest fire risk estimation, Environ. modell. Softw. 20, 613-621 (2005)
[79] L.S. Iliadis, F. Maris, An artificial neural network model for mountainous water-resources management: the case of Cyprus mountainous watersheds, Environ. Modell. Softw., in press.
[80] Ines, A. V. M.; Honda, K.; Gupta, A. Das; Droogers, P.; Clemente, R. S.: Combining remote sensing-simulation modeling and genetic algorithm optimization to explore water management options in irrigated agriculture, Agric. water manage. 83, 221-232 (2006)
[81] Itami, R. M.: Simulating spatial dynamics: cellular automata theory, Landscape urban plan. 30, 27-47 (1994)
[82] Jain, A.; Kumar, A.: An evaluation of artificial neural network technique for the determination of infiltration model parameters, Appl. soft comput. 6, 272-282 (2006)
[83] Jain, A. K.; Mao, J.; Mohiuddin, K.: Artificial neural networks: a tutorial, IEEE comput. 29, 31-44 (1996)
[84] Janssen, R.; Goosen, H.; Verhoeven, M. L.; Verhoeven, J. T. A.; Omtzigt, A. Q. A.; Maltby, E.: Decision support for integrated wetland management, Environ. modell. Softw. 20, 215-229 (2005)
[85] Kaelbling, L.; Littman, M.; Moore, A.: Reinforcement learning: a survey, J. artif. Intell. res. 4, 237-285 (1996)
[86] Kalapanidas, E.; Avouris, N.: Short-term air quality prediction using a case-based classifier, Environ. modell. Softw. 16, 263-272 (2001)
[87] Kalapanidas, E.; Avouris, N.: Feature selection for air quality forecasting: a genetic algorithm approach, AI commun. 16, 235-251 (2003)
[88] Karaca, F.; Ozkaya, B.: NN-LEAP: a neural network-based model for controlling leachate flow-rate in a municipal solid waste landfill site, Environ. modell. Softw. 21, 1190-1197 (2006)
[89] Karafyllidis, I.; Thanailakis, A.: A model for predicting forest fire spreading using cellular automata, Ecol. model. 99, 87-97 (1997)
[90] Kaster, D. S.; Medeiros, C. B.; Rocha, H. V.: Supporting modelling and problem solving from precedent experiences: the role of workflows and case-based reasoning, Environ. modell. Softw. 20, 689-704 (2005)
[91] Kawano, S.; Huynh, V. N.; Ryoke, M.; Nakamori, Y.: A context-dependent knowledge model for evaluation of regional environment, Environ. modell. Softw. 20, 343-352 (2005)
[92] Kennedy, J.; Eberhart, R.: Particle swarm optimization, , 1942-1948 (1995)
[93] Keramitsoglou, I.; Cartalis, C.; Tiranoudis, C. T.: Automatic identification of oil spills on satellite images, Environ. modell. Softw. 21, 640-652 (2006)
[94] Khoo, L. P.; Loi, M. Y.: A tabu-enhanced genetic algorithm approach to agile manufacturing, Int. J. Adv. manuf. Tech. 20, 692-700 (2002)
[95] Kim, G.; Barros, A. P.: Quantitative flood forecasting using multisensor data and neural networks, J. hydrol. 246, 45-62 (2001)
[96] King, J. M. P.; Banares-Alcantara, R.; Manan, Z. A.: Minimising environmental impact using CBR: an azeotropic distillation case study, Environ. modell. Softw. 14, 359-366 (1999)
[97] Kingston, G. B.; Lambert, M. F.; Maier, H. R.: Development of stochastic artificial neural networks for hydrological prediction, , 837-842 (2003)
[98] Koutroumanidis, T.; Iliadis, L.; Sylaios, G. K.: Time-series modelling of fishery landings using ARIMA models and fuzzy expected intervals software, Environ. modell. Softw. 21, 1711-1721 (2006)
[99] Kuo, J. T.; Wang, Y. Y.; Lung, W. S.: A hybrid neural-genetic algorithm for reservoir water quality management, Water res. 40, 1367-1376 (2006)
[100] Lee, B. H.; Scholz, M.; Horn, A.: Constructed wetlands: treatment of concentrated storm water runoff (Part A), Environ. eng. Sci. 23, 320-331 (2006)
[101] Lee, B. H.; Scholz, M.; Horn, A.; Furber, A. M.: Constructed wetlands: prediction of performance with case-based reasoning (Part B), Environ. eng. Sci. 23, 332-340 (2006)
[102] Lesser, V. R.: Multiagent systems: an emerging subdiscipline of AI, ACM comput. Surv. 27, 340-342 (1995)
[103] Li, Y.; Hilton, A. B. Chan: Optimal groundwater monitoring design using an ant colony optimization paradigm, Environ. modell. Softw. 22, 110-116 (2007)
[104] Loibl, W.; Toetzer, T.: Modeling growth and densification processes in suburban regions --- simulation of landscape transition with spatial agents, Environ. modell. Softw. 18, 553-563 (2003)
[105] Lu, W. Z.; Fan, H. Y.; Lo, S. M.: Application of evolutionary neural network method in predicting pollutant levels in downtown area of Hong Kong, Neurocomputing 51, 387-400 (2003)
[106] Mahaman, B. D.; Harizanis, P.; Filis, I.; Antonopoulou, E.; Yialouris, C. P.; Sideridis, A. B.: A diagnostic expert system for honeybee pests, Comput. electron. Agric. 36, 17-31 (2002)
[107] Mahaman, B. D.; Passam, H. C.; Sideridis, A. B.; Yialouris, C. P.: DIARES-IPM: a diagnostic advisory rule-based expert system for integrated pest management in solanaceous crop systems, Agric. syst. 76, 1119-1135 (2003)
[108] Maier, H. R.; Dandy, G. C.; Burch, M. D.: Use of artificial neural networks for modelling cyanobacteria anabaena spp. In the river murray, south Australia, Ecol. model. 105, 257-272 (1998)
[109] Maier, H. R.; Simpson, A. R.; Zecchin, A. C.; Foong, W. K.; Phang, K. Y.; Seah, H. Y.; Tan, C. L.: Ant colony optimization for design of water distribution systems, J. water resour. Plan. manage. 129, 200-209 (2003)
[110] Maier, H. R.; Zecchin, A. C.; Radbone, L.; Goonan, P.: Optimising the mutual information of ecological data clusters using evolutionary algorithms, Math. comput. Model. 44, 439-450 (2006) · Zbl 1170.90534 · doi:10.1016/j.mcm.2006.01.004
[111] Marchini, A.; Marchini, A. C.: A fuzzy logic model to recognise ecological sectors in the lagoon of Venice based on the benthic community, Ecol. model. 193, 105-193 (2006)
[112] Matott, L. S.; Rabideau, A. J.; Craig, J. R.: Pump-and-treat optimization using analytic element method flow models, Adv. water resour. 29, 760-775 (2006)
[113] Metternicht, G.; Gonzalez, S.: FUERO: foundations of a fuzzy exploratory model for soil erosion hazard prediction, Environ. modell. Softw. 20, 715-728 (2005)
[114] Molofsky, J.; Bever, D.: A new kind of ecology?, Bioscience 54, 440-446 (2004)
[115] M. Monticino, M. Acevedo, B. Callicott, T. Cogdill, C. Lindquist, Coupled human and natural systems: a multi-agent-based approach, Environ. Modell. Softw., in press.
[116] N. Moreno, R. Quintero, M. Ablan, R. Barros, J. Davila, H. Ramirez, G. Tonella, M.F. Acevedo, Biocomplexity of deforestation in the Caparo tropical forest reserve in Venezuela: an integrated multi-agent and cellular automata model, Environ. Modell. Softw., in press.
[117] Negoita, C. V.: Expert systems and fuzzy systems, (1985)
[118] Ng, K. C.; Abramson, B.: Uncertainty management in expert systems, IEEE intell. Syst. appl. 5, 29-47 (1990)
[119] S. Nissen, Implementation of a Fast Artificial Neural Network Library (FANN), http://fann.sourceforge.net/report/report.html, 2003.
[120] Niv, Y.; Joel, D.; Meilijson, I.; Ruppin, E.: Evolution of reinforcement learning in foraging bees: a simple explanation for risk averse behaviour, Neurocomputing 44 -- 46, 951-956 (2002) · Zbl 1007.68854 · doi:10.1016/S0925-2312(02)00496-4
[121] Nunez, H.; Sanchez-Marre, M.; Cortes, U.; Comas, J.; Martinez, M.; Rodriguez-Roda, I.; Poch, M.: A comparative study on the use of similarity measures in case-based reasoning to improve the classification of environmental system situation, Environ. modell. Softw. 9, 809-819 (2004)
[122] Onkal-Engin, G.; Demir, I.; Engin, S. N.: Determination of the relationship between sewage odour and BOD by neural networks, Environ. modell. Softw. 20, 843-850 (2005)
[123] Pahl-Wostl, C.: Information, public empowerment, and the management of urban watersheds, Environ. modell. Softw. 20, 457-467 (2005)
[124] Parker, D. C.; Manson, S. M.; Janssen, M. A.; Hoffmann, M. J.; Deadman, P.: Multi-agent systems for the simulation of land-use and land-cover change: a review, Ann. assoc. Am. geogr. 93, 314-337 (2003)
[125] Parrott, L.; Lacroix, R.; Wade, K. M.: Design considerations for the implementation of multi-agent systems in the dairy industry, Comput. electron. Agric. 38, 79-98 (2003)
[126] Passone, S.; Chung, P. W. H.; Nassehi, V.: Case-based reasoning for estuarine model design, Lect. notes artif. Int. 2416, 590-603 (2002) · Zbl 1013.68687 · http://link.springer.de/link/service/series/0558/bibs/2416/24160590.htm
[127] Pelletier, G. J.; Chapra, S. C.; Tao, H.: Qual2kw --- a framework for modelling water quality in streams and rivers using a genetic algorithm for calibration, Environ. modell. Softw. 21, 419-425 (2006)
[128] Pongracz, R.; Bogardi, I.; Duckstein, L.: Application of fuzzy rule-based modelling technique to regional drought, J. hydrol. 224, 100-114 (1999)
[129] Pozdnyakov, D.; Shuchman, R.; Korosov, A.; Hatt, C.: Operational algorithm for the retrieval of water quality in the great lakes, Remote sens. Environ. 97, 352-370 (2005)
[130] Purnomo, H.; Mendoza, G. A.; Prabhu, R.; Yasmi, Y.: Developing multi-stakeholder forest management scenarios: a multi-agent system simulation approach applied in Indonesia, For. policy econ. 7, 475-491 (2005)
[131] Roberts, D. W.: Modelling forest dynamics with vital attributes and fuzzy systems theory, Ecol. model. 90, 161-173 (1996)
[132] Roda, I. R.; Sanchez-Marre, M.; Comas, J.; Cortes, U.; Poch, M.: Development of a case-based system for the supervision of an activated sludge process, Environ. technol. 22, 477-486 (2001)
[133] Rodvold, D. M.; Mcleod, D. G.; Brandt, J. M.; Snow, P. B.; Murphy, G. P.: Introduction to artificial neural networks: taking the lid off the black box, Prostate 46, 39-44 (2001)
[134] S.A. Rounds, Development of a neural network model for dissolved oxygen in the Tualatin River, Oregon, in: Proceedings of the Second Federal Interagency Hydrologic Modeling Conference, Las Vegas, NV, http://smig.usgs.gov/SMIG/features_0902/tualatin_ann.html, 2002.
[135] Sadiq, R.; Husain, T.: A fuzzy-based methodology for an aggregative environmental risk assessment: a case study of drilling waste, Environ. modell. Softw. 20, 33-46 (2005)
[136] A.B. Salem, Intelligent Learning Systems: A Case-Based Reasoning Approach, http://rilw.itim-cj.ro/2000/tutorials/salem_tut.html, 2000.
[137] Sanchez-Marre, M.; Cortes, U.; Roda, I. R.; Poch, M.: Sustainable case learning for continuous domains, Environ. modell. Softw. 14, 349-357 (1999)
[138] Sanchez-Marre, M.; Cortes, U.; Roda, I. R.; Poch, M.; Lafuente, J.: Learning and adaptation in wastewater treatment plants through case-based reasoning, Microcomp. civil eng. 12, 251-266 (1997)
[139] Pedro, J. San; Burstein, F.; Sharp, A.: A case-based fuzzy multicriteria decision support model for tropical cyclone forecasting, Eur. J. Oper. res. 160, 308-324 (2005) · Zbl 1134.90426 · doi:10.1016/j.ejor.2003.09.003
[140] Barros, M. S. Santiago; Rodrigues, V.: Nonlinear aspects of data integration for land-cover classification in a neural network environment, Adv. space res. 14, 265-268 (1994)
[141] Schluter, M.; Ruger, N.: Application of a GIS-based simulation tool to illustrate implications of uncertainties for water management in the amudarya river delta, Environ. modell. Softw. 22, 158-166 (2007)
[142] C. Schmid, Course on Dynamics of Multidisplicinary and Controlled Systems, http://www.atp.ruhr-uni-bochum.de/rt1/syscontrol/main.html, 2005.
[143] Schönfisch, B.; Kinder, M.: A fish migration model, Lect. notes comput. Sci. 2493, 210-219 (2002) · Zbl 1027.92510 · http://link.springer.de/link/service/series/0558/bibs/2493/24930210.htm
[144] P.S. Shelokar, P. Siarry, V.K. Jayaraman, B.D. Kulkarni, Particle swarm and ant colony algorithms hybridized for improved continuous optimization, Appl. Math. Comput., in press. · Zbl 1114.65334 · doi:10.1016/j.amc.2006.09.098
[145] Slini, T.; Kaprara, A.; Karatzas, K.; Moussiopoulos, N.: PM10 forecasting for Thessaloniki, Greece, Environ. modell. Softw. 21, 559-565 (2006)
[146] Socha, K.; Knowles, J.; Samples, M.: A MAX-MIN ant system for the university course timetabling problem, Lect. notes comput. Sci. 2463, 1-13 (2002)
[147] Sousa, S. I. V.; Martins, F. G.; Alvim-Ferraz, M. C. M.; Pereira, M. C.: Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations, Environ. modell. Softw. 22, 97-103 (2007)
[148] J. Spate, A.J. Jakeman, Environ. Modell. Softw., submitted for publication.
[149] Srinivasula, S.; Jain, A.: A comparative analysis of training methods for artificial neural network rainfall-runoff models, Appl. soft comput. 6, 295-306 (2006)
[150] Steeb, W. -H.: The nonlinear workbook, (1999) · Zbl 0980.86005
[151] C. Stergiou, D. Siganos, Neural Networks, http://www.doc.ic.ac.uk/∼nd/surprise_96/journal/vol4/cs11/report.html, 1996.
[152] D. Stevens, S. Dragicevic, K. Rothley, iCity: a GIS-CA modelling tool for urban planning and decision making, Environ. Modell. Softw., in press.
[153] Stockwell, D. R. B.; Beach, J. H.; Stewart, A.; Vorontsov, G.; Vieglais, D.; Pereira, R. S.: The use of the GARP genetic algorithm and Internet grid computing in the lifemapper world atlas of species biodiversity, Ecol. model. 195, 139-145 (2002)
[154] Stützle, T.; Hoos, H. H.: MAX-MIN ant system, Future gener. Comp. syst. 16, 889-914 (2000)
[155] R. Sutton, A. Barto, Reinforcement Learning: An Introduction, http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html, 1998.
[156] Sycara, K. P.: Multiagent systems, AI mag. 19, No. 2, 79-92 (1998)
[157] Takeuchi, T.; Yazu, Y.; Sakuma, A.: Integrated environmental management process applying genetic algorithm, Int. J. Prod. econ. 60/61, 229-234 (1999)
[158] Tan, R. R.: Rule-based life cycle impact assessment using modified rough set induction methodology, Environ. modell. Softw. 20, 509-513 (2005)
[159] R.R. Tan, Hybrid evolutionary computation for the development of pollution prevention and control strategies, J. Cleaner Prod., in press.
[160] Termansen, M.; Mcclean, C. J.; Preston, C. D.: The use of genetic algorithms and Bayesian classification to model species distributions, Ecol. model. 192, 410-424 (2006)
[161] Tsoularis, A.; Wallace, J.: Reinforcement learning for a stochastic automaton modelling predation in stationary model-mimic environments, Math. biosci. 195, 76-91 (2005) · Zbl 1065.92064 · doi:10.1016/j.mbs.2005.01.003
[162] Van Broekhoven, E.; Adriaenssens, V.; De Baets, B.; Verdonschot, P. F. M.: Fuzzy rule-based macroinvertebrate habitat suitability models for running waters, Ecol. model. 198, 71-84 (2006)
[163] A. Vellido, E. Marti, J. Comas, I. Rodriguez-Roda, F. Sabater, Exploring the ecological status of human altered streams through Generative Topographic Mapping, Environ. Modell. Softw., in press.
[164] Verdenius, F.; Broeze, J.: Generalised and instance-specific modelling for biological systems, Environ. modell. Softw. 14, 339-348 (1999)
[165] Wang, Q. J.: Using genetic algorithms to optimise model parameters, Environ. modell. Softw. 12, 27-34 (1997)
[166] Watson, I.; Marir, F.; Case-Based: Reasoning: a review, Knowl. eng. Rev. 9, 327-354 (1994)
[167] Winston, P. H.: Artificial intelligence, (1984) · Zbl 0598.68056
[168] Wolfram, S.: Universality and complexity in cellular automata, Physica D 10, 1-35 (1984) · Zbl 0562.68040
[169] Xiong, L.; Shamseldin, A. Y.; O’connor, K. M.: A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi-sugeno fuzzy system, J. hydrol. 245, 196-217 (2001)
[170] Yao, X.: Evolving artificial neural networks, Proc. IEEE 87, No. 9, 1423-1447 (1999)
[171] Yin, P. Y.; Wang, J. Y.: Ant colony optimization for the nonlinear resource allocation problem, Appl. math. Comput. 174, 1438-1453 (2006) · Zbl 1111.90068 · doi:10.1016/j.amc.2005.05.042
[172] P.Y. Yin, J.Y. Wang, A particle swarm optimization approach to the nonlinear resource allocation problem, Appl. Math. Comput., in press. · Zbl 1127.90417 · doi:10.1016/j.amc.2006.05.051
[173] Yong, M.; Yong-Zhen, P.; Xiao-Lian, W.; Shu-Ying, W.: Intelligent control aeration and external carbon addition for improving nitrogen removal, Environ. modell. Softw. 21, 821-828 (2006)
[174] S.H. Zahiri, S.A. Seyedin, Swarm intelligence based classifiers, J. Franklin Inst., in press. · Zbl 1269.62052
[175] Zecchin, A. C.; Simpson, A. R.; Maier, H. R.; Leonard, M.; Roberts, A. J.; Berrisford, M. J.: Application of two ant colony optimisation algorithms to water distribution system optimisation, Math. comput. Model. 44, 451-468 (2006) · Zbl 1171.90578 · doi:10.1016/j.mcm.2006.01.005
[176] Zecchin, A. C.; Simpson, A. R.; Maier, H. R.; Nixon, J. B.: Parametric study for an ant algorithm applied to water distribution system optimization, IEEE trans. Evol. comput. 9, 175-190 (2005)
[177] Zetian, F.; Feng, X.; Yun, Z.; Xiaoshuan, Z.: Pig-vet: a web-based expert system for pig disease diagnosis, Expert syst. Appl. 29, 93-103 (2005)
[178] Zhang, Q.; Stanley, S. J.: Forecasting raw-water quality parameters for the north saskatchewan river by neural network modelling, Water res. 31, 2340-2350 (1997)
[179] Zhang, H.; Li, H.; Tam, C. M.: Particle swarm optimization for resource-constrained project scheduling, Int. J. Proj. manage. 24, 83-92 (2006)