zbMATH — the first resource for mathematics

Two-dimensional heat and mass transfer during drying of deformable media. (English) Zbl 1140.80004
A mathematical model consisting of two-dimensional heat and mass transfer in clay is analysed. An axis-symmetry clay solid is considered as an isotropic porous medium with no chemical reaction. A nonlinear convective-diffusive equation is developed for the moisture diffusion. An implicit finite difference scheme is used to solve the heat and mass transfer equations. As obvious, the temperature gradient within the clay is weak. No attempt is made to study the stability of the numerical scheme to solve the problem.
80A20 Heat and mass transfer, heat flow (MSC2010)
76R10 Free convection
76E06 Convection in hydrodynamic stability
Full Text: DOI
[1] N. Kechaou, Séchage des gels fortement déformables: études de la diffusion interne de l’eau et modélisation, Thèse institut national polytechnique de Loraine, 1989.
[2] A.A.J. Ketelaars, Drying Deformable Media, Kinetics, Shrinkage and Stress, Ph.D. thesis, University of Endhoven, 1993.
[3] Moyne, C.; Kechaou, N.; Do Amral Sobral, P.J.; Roques, M.; Cairault, A.; Bizot, H., Mechanism of water transport in drying of gels, Int. chem. eng., 34, 3, 360-369, (1994)
[4] R. Peczalski, P. Laurent, J. Andrieu, J.C. Boyer, M. Boivin, Drying-induced stress build-up within spaghetti, in: Drying’96 Proceedings of the 10th International Drying Symposium (IDS ’96), vol. B, Krakow, Poland, 1996, pp. 805-816.
[5] Roques, M.A., Heat and mass transfer in polymer and gel drying, (), 1-25
[6] Zagrouba, F.; Mihoubi, D.; Bellagi, A., Drying of Clay. II. rheological modelization and simulation, Drying technol., 20, 10, 1895-1917, (2002)
[7] Augier, F.; Coumans, W.J.; Hugget, A.; Kaasschiester, E.F., On the risk of cracking in Clay drying, Chem. eng. J., 86, 133-138, (2002)
[8] Ece, M.C.; Chihan, A., A liquid diffusion model for drying rough Rice, Trans. ASAE, 36, 3, 837-840, (1993)
[9] S. Yamaguchi, Temperature and moisture dependent diffusivity of moisture in rice kernel, in: Drying’92, Part B, 1992, pp. 1389-1399.
[10] Mihoubi, D.; Zagrouba, F.; Vaxelaire, J.; Bellagi, A.; Roques, M., Transfer phenomena during the drying of a shrinkable product: modelling and simulations, Drying technol., 22, 1-2, 91-109, (2004)
[11] Ponsart, G.; Vasseur, J.; Frias, J.M.; Duquenoy, A.; Méot, J.M., Modelling of stress due to shrinkage during drying of spaghetti, J. food eng., 57, 277-285, (2003)
[12] A. Stamatopoulos, Contribution à l’étude expérimentale et théorique du séchage des pâtes alimentaires, Thèse de l’université des sciences et Techniques du Languedoc, 1986.
[13] D. Mihoubi, J. Vaxelaire, F. Zagrouba, A. Bellagi, M. Roques, Transfer phenomena during the drying of a shrinkable product: modeling and simulations, in: 13th International Drying Symposium, Beijing, PR China, 27-30 August, 2002.
[14] D. Mihoubi, deshydratation d’argiles par compression et séchage. Aspects de modélisation et de simulation, Thèse de l’université de Pau et des Pays de l’Adour, 2004.
[15] F. Zagrouba, Séchage par convection et un apport rayonnant micro-ondes des milieux déformables, Modélisation des phénomènes de transferts de chaleur et de matière, Thèse de doctorat, Institut National Polytechnique de Loraine, 1993.
[16] J.M. Collard, Etude des transferts d’humidité et des déformations pendant le séchage d’une plaque d’argile, thèse de doctorat, Thèse de l’université de Poitiers, 1989.
[17] Whitaker, S., Fundamental principles of heat transfer, (1972), Pergamon Press Inc. New York
[18] Hastani, M.; Itaya, Y., Fundamental study on shrinkage of formed Clay during drying. viscoelastic strain – stress and heat/moisture transfer, Drying technol., 10, 4, 1013-1036, (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.