zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Distributed robust $H_\infty $ consensus control in directed networks of agents with time-delay. (English) Zbl 1140.93355
Summary: This paper investigates consensus problems for directed networks of agents with external disturbances and model uncertainty on fixed and switching topologies. Both networks with and without time-delay are taken into consideration. In doing the analysis, we first perform a model transformation and turn the original system into a reduced-order system. Based on this reduced-order system, we then present conditions under which all agents reach consensus with the desired $H_\infty $ performance. Finally, simulation results are provided to demonstrate the effectiveness of our theoretical results.

MSC:
93B36$H^\infty$-control
93A15Large scale systems
93C41Control problems with incomplete information
93B11System structure simplification
WorldCat.org
Full Text: DOI
References:
[1] Tsitsiklis, J. N.; Bertsekas, D. P.; Athans, M.: Distributed asynchronous deterministic and stochastic gradient optimization algorithms. IEEE trans. Automat. control 31, No. 9, 803-812 (1986) · Zbl 0602.90120
[2] Bertsekas, D. P.; Tsitsiklis, J.: Parallel and distributed computation. (1989) · Zbl 0743.65107
[3] Lynch, N. A.: Distributed algorithms. (1997)
[4] Vicsek, T.; Cziroók, A.; Ben-Jacob, E.; Cohen, O.; Shochet, I.: Novel type of phase transition in a system of self-driven particles. Phys. rev. Lett. 75, No. 6, 1226-1229 (1995)
[5] Jadbabaie, A.; Lin, J.; Morse, A. S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE trans. Automat. control 48, No. 6, 988-1001 (2003)
[6] Moreau, L.: Stability of multi-agent systems with time-dependent communication links. IEEE trans. Automat. control 50, No. 2, 169-182 (2005)
[7] Olfati-Saber, R.; Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE trans. Automat. control 49, No. 9, 1520-1533 (2004)
[8] Olfati-Saber, R.; Fax, J. A.; Murray, R. M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95, No. 1, 215-233 (2007)
[9] Fax, J. A.; Murray, R. M.: Information flow and cooperative control of vehicle formations. IEEE trans. Automat. control 49, No. 9, 1465-1476 (2004)
[10] Lafferriere, G.; Williams, A.; Caughman, J.; Veerman, J. J. P.: Decentralized control of vehicle formations. System control lett. 54, No. 9, 899-910 (2005) · Zbl 1129.93303
[11] D.B. Kingston, R.W. Beard, Discrete-time average-consensus under switching network topologies, in: Proceedings of IEEE Conference on Decision and Control, 2005, pp. 2016--2021
[12] Ren, W.; Beard, R. W.: Consensus seeking in multi-agent systems under dynamically changing interaction topologies. IEEE trans. Automat. control 50, No. 5, 655-661 (2005)
[13] W. Ren, R.W. Beard, E.M. Atkins, A survey of consensus problem in multiagent coordination, in: Proceedings of the American Control Conference, 2005, pp. 1859--1864
[14] Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE trans. Automat. control 51, No. 3, 410-420 (2006)
[15] H. Tanner, A. Jadbabaie, G. Pappas, Stable flocking of mobile agents, part II: Dynamic topology, in: Proceedings of IEEE Conference on Decision and Control, 2003, pp. 2016--2021
[16] Moshtagh, N.; Jadbabaie, A.: Distributed geodesic control laws for flocking of nonholonomic agents. IEEE trans. Automat. control. 52, No. 4, 681-686 (2007)
[17] Dimarogonas, D. V.; Kyriakopoulos, Kostas J.: On the rendezvous problem for multiple nonholonomic agents. IEEE trans. Automat. control 52, No. 5, 916-922 (2007)
[18] D.V. Dimarogonas, Kostas J. Kyriakopoulos, Connectivity preserving distributed swarm aggregation for multiple kinematic agents, in: Proceedings of IEEE Conference on Decision and Control, 2007, pp. 2913--2918
[19] M. Ji, M. Egerstedt, Distributed formation control while preserving connectedness, in: Proceedings of IEEE Conference on Decision and Control, 2006, pp. 5962--5967
[20] Hong, Y.; Gao, L.; Cheng, D.; Hu, J.: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42, No. 7, 1177-1182 (2006) · Zbl 1117.93300
[21] Ögren, P.; Fiorelli, E.; Leonard, N. E.: Cooperative control of mobile sensor networks: adaptive gradient climbing in a distributed environment. IEEE trans. Automat. control 49, No. 8, 1292-1302 (2004)
[22] Xiao, L.; Boyd, S.: Fast linear iterations for distributed averaging. System control lett. 53, No. 1, 65-78 (2004) · Zbl 1157.90347
[23] Xiao, L.; Boyd, S.; Kimb, S. J.: Distributed average consensus with least-mean-square deviation. J. parallel distr. Comput. 67, No. 1, 33-46 (2007) · Zbl 1109.68019
[24] P. Bliman, G. Ferrari-Trecate, Average consensus problems in networks of agents with delayed communications, in: Proceedings of IEEE Conference on Decision and Control, 2005, pp. 7066--7071
[25] L. Fang, P.J. Antsaklis, Information consensus of asynchronous discrete-time multi-agent systems, in: Proceedings of the American Control Conference, 2005, pp. 1883--1888
[26] M. Cao, A.S. Morse, B.D.O. Anderson, Agreeing asynchronously: Announcement of results, in: Proceedings of IEEE Conference on Decision and Control, 2006, pp. 4301--4306
[27] M. Cao, A.S. Morse, B.D.O. Anderson, Reaching an agreement using delayed information, in: Proceedings of IEEE Conference on Decision and Control, 2006, pp. 3375--3380
[28] Kim, Y.; Mesbahi, M.: On maximizing the second smallest eigenvalue of a state-dependent graph Laplacian. IEEE trans. Automat. control 51, No. 1, 116-120 (2007)
[29] P. Lin, Y. Jia, J. Du, S. Yuan, Distributed consensus control for networks of second-order agents with fixed topology and time-delay, in: Proceedings of the Chinese Control Conference, 2007, pp. 2-577-2-581
[30] Lin, P.; Jia, Y.: Average-consensus in networks of multi-agents with both switching topology and coupling time-delay. Physica A 387, No. 1, 303-313 (2008)
[31] P. Lin, Y. Jia, J. Du, S. Yuan, Distributed control of multi-agent systems with second-order agent dynamics and delay-dependent communications, Asian J. Control 10 (2) (2008) (in press)
[32] Godsil, C.; Royle, G.: Algebraic graph theory. (2001) · Zbl 0968.05002
[33] Horn, R. A.; Johnson, C. R.: Matrix analysis. (1987)
[34] Dullerud, G. E.; Paganini, F.: A course in robust control theory: A convex approach. Series in texts in applied mathematics 36 (2000) · Zbl 0939.93001
[35] K.C. Goh, L. Turan, M.G. Safonov, G.P. Papavassilopoulos, J.H. Ly, Baffine matrix inequality properties and computational methods, in: Proceedings of the American Control Conference, 1994, pp. 850--855
[36] S. Ibaraki, M. Tomizuka, Rank minimization approach for solving BMI problems with random search, in: Proceedings of the American Control Conference, 2001, pp. 1870--1875
[37] Kanev, S.; Scherer, C.; Verhaegen, M.; De Schutter, B.: Robust output-feedback controller design via local BMI optimization. Automatica 40, No. 7, 1115-1127 (2004) · Zbl 1051.93042
[38] Sastry, S.: Nonlinear systems: analysis, stability, and control. (1999) · Zbl 0924.93001
[39] Hale, J.: Theory of functional differential equations. (1977) · Zbl 0352.34001