×

Zeta functions over \(\mathbb F_1\). (English) Zbl 1141.11316

Summary: We show basic properties of zeta functions over the one element field starting from an algebraic set over the integer ring. We calculate several examples and we investigate special values via the associated \(K\)-group identified as the stable homotopy group of spheres.

MSC:

11M41 Other Dirichlet series and zeta functions
11G25 Varieties over finite and local fields
11S40 Zeta functions and \(L\)-functions
11S70 \(K\)-theory of local fields
14G15 Finite ground fields in algebraic geometry
Full Text: DOI

Online Encyclopedia of Integer Sequences:

a(n) = (2/3)*(4^n-1).

References:

[1] J. F. Adams, On the groups \(J(X)\). IV, Topology 5 (1966), 21-71. · Zbl 0145.19902 · doi:10.1016/0040-9383(66)90004-8
[2] A. Deitmar, Schemes over \(\mathbf{F}_1\), (2004). (Preprint). · Zbl 1102.11028
[3] N. Kurokawa, Multiple zeta functions: an example, in Zeta functions in geometry ( Tokyo , 1990), 219-226, Adv. Stud. Pure Math., 21, Kinokuniya, Tokyo. · Zbl 0795.11037
[4] N. Kurokawa, Absolute Frobenius operators, Proc. Japan Acad., 80A (2004), no. 9, 175-179. · Zbl 1077.11063 · doi:10.3792/pjaa.80.175
[5] N. Kurokawa, Values of absolute tensor products, Proc. Japan Acad., 81A (2005), no. 10, 185-190. · Zbl 1141.11317 · doi:10.3792/pjaa.81.185
[6] N. Kurokawa and S. Koyama, Values of multiple zeta functions. (In preparation). · Zbl 1091.11030
[7] N. Kurokawa, H. Ochiai and M. Wakayama, Absolute derivations and zeta functions, Doc. Math. 2003 , Extra Vol., 565-584 (electronic). · Zbl 1101.11325
[8] S. Lichtenbaum, Values of zeta-functions, étale cohomology, and algebraic \(K\)-theory, in Algebraic \(K\)-theory , II: “ Classical ” algebraic \(K\)-theory and connections with arithmetic ( Proc . Conf ., Battelle Memorial Inst ., Seattle , Wash ., 1972), 489-501. Lecture Notes in Math., 342, Springer, Berlin. · Zbl 0284.12005
[9] Yu. I. Manin, Lectures on zeta functions and motives (according to Deninger and Kurokawa), Astérisque No. 228 (1995), 4, 121-163. · Zbl 0840.14001
[10] Yu. I. Manin, The notion of dimension in geometry and algebra, (2005). (Preprint). math.AG/ 0502016. · Zbl 1096.14001 · doi:10.1090/S0273-0979-06-01081-0
[11] D. Quillen, On the cohomology and \(K\)-theory of the general linear groups over a finite field, Ann. of Math. (2) 96 (1972), 552-586. · Zbl 0249.18022 · doi:10.2307/1970825
[12] D. Quillen, The Adams conjecture, Topology 10 (1971), 67-80. · Zbl 0219.55013 · doi:10.1016/0040-9383(71)90018-8
[13] D. Quillen, Letter from Quillen to Milnor on \(\operatorname{Im}(\pi_{i}0\rightarrow \pi_{i}^{\mathrm{s}} \rightarrow K_{i}\mathbf{Z})\), in Algebraic \(K\)-theory ( Proc . Conf ., Northwestern Univ ., Evanston , Ill., 1976), 182-188. Lecture Notes in Math., 551, Springer, Berlin.
[14] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres , Academic Press, Orlando, FL, 1986.
[15] C. Soulé, Les variétés sur le corps à un élément, Mosc. Math. J. 4 (2004), no. 1, 217-244, 312. · Zbl 1103.14003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.