×

A general refinement of Jordan’s inequality and a refinement of L. Yang’s inequality. (English) Zbl 1141.26003

Summary: In the article, a general double refinement of Jordan’s inequality,
\[ \sum^n_{k=1}\alpha_k(\pi^2-4x^2)^k\leq \frac{\sin x}{x}-\frac 2\pi\leq\sum^n_{k=1}\beta_k(\phi^2-4x^2)^k \]
for \(n\in\mathbb N\), is established, where the coefficients \(\alpha_k\) und \(\beta_k\) defined by recursing formulas (9) and (10) are the best possible. As an application, L. Yang’s inequality is refined.

MSC:

26D05 Inequalities for trigonometric functions and polynomials
26D15 Inequalities for sums, series and integrals
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abel U., Amer. Math. Monthly 93 (7) pp 568– (1986)
[2] DOI: 10.2140/pjm.2000.192.1 · Zbl 0951.33012
[3] Anderson G. D., Conformal Invariants, Inequalities, and Quasiconformal Maps (1997) · Zbl 0885.30012
[4] Debnath L., Appl. Math. Lett. 16 (4) pp 557– (2003) · Zbl 1041.26005
[5] Feng Y.-F., Math. Magazine 69 pp 126– (1996)
[6] Jiang W.-D., J. Inequalities Pure Appl. Math. 7 (3) pp 288– (2005)
[7] Kober H., Trans. Amer. Math. Soc. 56 (1) pp 7– (1944) · Zbl 0061.14301
[8] Kuang J.-Ch., Chángyòng Bùdengshı (Applied Inequalities), 3. ed. (2004)
[9] Luo Q.-M., Adv. Studies Contemp. Math. (Kyungshang) 6 (1) pp 47– (2003)
[10] Mercer A. McD., Amer. Math. Monthly 89 (6) pp 424– (1982)
[11] Mitrinovic D. S., Analytic Inequalites (1970)
[12] Niu D.-W., Generalizations of Jordan’s inequality and applications (2007)
[13] Özban A. Y., Appl. Math. Lett. 19 (2) pp 155– (2006) · Zbl 1109.26011
[14] Qi F., (J. Math. Technol.) 12 (4) pp 98– (1996)
[15] Qi F., Ji aozuò Kuàngyè Xuéyuàn Xuébào 12 (4) pp 101– (1993)
[16] Qi F., Chinese Quar. J. Math. 8 (2) pp 40– (1993)
[17] Qi F., Méitàn Gaodueng Jiàoyù (Coal Higher Education) pp 32– (1993)
[18] Qi F., Math. Inform. Quar. 8 (3) pp 116– (1998)
[19] Qi F., Math. Inequalities Appl. 2 (4) pp 517– (1999) · Zbl 0943.26030
[20] Qi F., Math. Inequalities Appl. 11 (2008)
[21] Qi F., Math. Inequalities Appl. 11 (2008)
[22] Redheffer R., Amer. Math. Monthly 75 (10) pp 1125– (1968)
[23] Redheffer R., Amer. Math. Monthly 76 (4) pp 422– (1969)
[24] Williams J. P., Amer. Math. Monthly 76 (10) pp 1153– (1969)
[25] Wu Sh.-H., Octogon Math. Magazine 12 (1) pp 267– (2004)
[26] Wu Sh.-H., RGMIA, Res. Rep. Collections 7 (2004)
[27] Wu Sh.-H., Appl. Math. Lett. 19 (12) pp 1378– (2006) · Zbl 1132.26334
[28] DOI: 10.1016/j.aml.2006.05.022 · Zbl 1162.26310
[29] Yang L., Zhí Fenbù Lılùn Jíqí Xın Yánjiu (The Theory of Distribution of Values of Functions and Recent Researches) (1982)
[30] Zhang X.-H., J. Inequalities Pure Appl. Math. 7 (2) (2006)
[31] Zhao Ch.-J., Shùxué de Shíjiàn yu Rènshí, (Math. Practice Theory) 30 (4) pp 493– (2000)
[32] Zhao Ch.-J., Journal of Inequalities in Pure and Applied Mathematics 3 (4) (2002)
[33] Zhu L., Appl. Math. Lett. 19 (9) pp 990– (2006) · Zbl 1122.26014
[34] Zhu L., Appl. Math. Lett. 19 (3) pp 240– (2006) · Zbl 1097.26012
[35] Zhu L., Math. Inequalities Appl. 9 (1) pp 103– (2006) · Zbl 1089.26007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.