×

zbMATH — the first resource for mathematics

On the structure of the set of solutions of nonlinear boundary value problems for ODEs on unbounded intervals. (English) Zbl 1141.34021
The paper deals with the topological structure of the solution set for the quasilinear first-order boundary value problems on unbounded intervals. The \(R_{\delta }\)-structure is proved, provided the boundary conditions are linear. The main theorem is established by means of several technical lemmas. The illustrating example however concerns a problem on a compact interval.

MSC:
34B40 Boundary value problems on infinite intervals for ordinary differential equations
PDF BibTeX XML Cite
References:
[1] ANDRES J.-GABOR G.-GORNIEWICZ L.: Acyclicity of solution sets to functional inclusions. Nonlinear AnaL 49 (2002), 671-688. · Zbl 1012.34011
[2] ANDRES J.-GABOR G.-GORNIEWICZ L.: Topological structure of solution sets to multivalued asymptotic problems. Z. Anal. Anwendungen 18 (1999), 1-20.
[3] ANDRES J.-GABOR G.-GORNIEWICZ L.: Topological structure of solution sets to multi-valued asymptotic problems. Z. Anal. Anwendungen 19 (2000), 35-60. · Zbl 0974.34045
[4] ANDRES J.-GORNIEWICZ L.: Topological Fixed Point Principles for Boundary Value Problems. Kluwer, Dordrecht, 2003. · Zbl 1029.55002
[5] CECCHI M.-MARINI M.-ZEZZA P. L.: Linear boundary value problems for systems of ordinary differential equations on non compact intervals. Ann. Mat. Pura Appl. (4) 123 (1980), 267-285. · Zbl 0442.34016
[6] CZARNOWSKI K.-PRUSZKO T.: On the structure of fixed point sets of compact maps in \(B_0\) spaces with applications in unbounded domain. J. Math. Anal. Appl. 154 (1991), 151-163. · Zbl 0729.47054
[7] DUGUNDJI J.-GRANAS A.: Fixed Point Theory. PWN, Warszawa, 1982. · Zbl 0483.47038
[8] EDWARDS R. E.: Functional Analysis. Theory and Applications. Holt Rinehart and Winston, New York-Chicago-San Francisco-Toronto-London, 1965. · Zbl 0182.16101
[9] GABOR G.: On the acyclicity of fixed point sets multivalued maps. Topol. Methods Nonlinear Anal. 14 (1999), 327-343. · Zbl 0954.54022
[10] GORNIEWICZ L.: Topological approach to differential inclusions. Topological Methods in Differential Equations and Inclusions. Proceedings of the NATO Advanced Study Institute and Seminaire de Mathematiques Superieures on Topological Methods in Differential Equations and Inclusions, Montreal, Canada, July 11-22, 1994. (A. Granas et al., Kluwer Academic Publishers. NATO ASI Ser., Ser. C, Math. Phys. Sci. 472, Dordrecht, 1995, pp. 129-190.
[11] KEČKEMÉTYOVÁ M.: On the existence of a solution for nonlinear operator equations in Frechet spaces. Math. Slovaca 42 (1992), 43-54. · Zbl 0744.34022
[12] KEČKEMÉTYOVÁ M.: Continuous solutions of nonlinear boundary value problems for ODEs on unbounded intervals. Math. Slovaca 42 (1992), 279-297. · Zbl 0765.34018
[13] KUBÁČEK Z.: On the structure of fixed point sets of same compact maps in the Frechet space. Math. Bohem. 118 (1993), 343-358. · Zbl 0839.47037
[14] ŠEDA V.-BELOHOREC S.: A remark on the second order functional differential systems. Arch. Math. (Brno) 29 (1993), 169-176. · Zbl 0804.34060
[15] ŠEDA V.-ELIAŠ J.: On the initial value problem for functional differential systems. Proc. Georgian Acad. Sci., Math. 1 (1993), 467-476. · Zbl 0801.34062
[16] ŠEDA V.-KUBÁČEK Z.: On the connectedness of the set of fixed points of a compact operator in the Frechet space \(C^m([b, \infty), R^n)\). Czechoslovak Math. J. 42 (1992), 577-588. · Zbl 0793.47055
[17] ŠVEC M.: Integral Equation. MFF UK, Bratislava, 1983.
[18] VIDOSSICH G.: On the structure of the set of solutions of nonlinear equations. J. Math. Anal. Appl. 34 (1971), 602-617.
[19] VIDOSSICH G.: A fixed point theorem for function spaces. J. Math. Anal. Appl. 36 (1971), 581-587. · Zbl 0194.44903
[20] YOSIDA K.: Functional Analysis. Springer-Verlag, Berlin, 1965. · Zbl 0126.11504
[21] ZEZZA P. L.: An equivalence theorem for nonlinear operator equations and an extension of Leray-Schauder continuation theorem. Boll. Unione Mat. Ital. Sez. A Mat. Soc. Cult. (5) 15 (1978), 545-551. · Zbl 0411.47039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.