Wei, Junjie Bifurcation analysis in a scalar delay differential equation. (English) Zbl 1141.34045 Nonlinearity 20, No. 11, 2483-2498 (2007). The equations \[ \dot {p}(t) = \frac{\beta \theta ^n}{\theta ^n + p^n(t - \tau )} - \gamma p(t),\quad t \geq 0 \]and \[ \dot {p}(t) = \frac{\beta \theta ^np^n(t - \tau )}{\theta ^n + p^n(t - \tau )} - \gamma p(t), \quad t \geq 0 \] describing the physiological control system are considered. Using normal form and center manifold techniques and global Andronov-Hopf bifurcation results by J. Wu [Trans. Am. Math. Soc. 350, 4799–4838 (1998; Zbl 0905.34034)] global existence of multiple periodic solutions is proved. Reviewer: Boris V. Loginov (Ul’yanovsk) Cited in 42 Documents MSC: 34K18 Bifurcation theory of functional-differential equations 92C35 Physiological flow Keywords:nonlinear ODE; delay; Andronov-Hopf bifurcation; global existence of periodic solutions Citations:Zbl 0905.34034 PDF BibTeX XML Cite \textit{J. Wei}, Nonlinearity 20, No. 11, 2483--2498 (2007; Zbl 1141.34045) Full Text: DOI OpenURL