zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Oscillation of second order delay differential equations. (English) Zbl 1141.34341
Summary: We establish oscillation criteria for the second order functional equations $$\left[x(t)+\sum^l_{i=1}c_i(t)x(t-\tau_i)\right]''+\sum^m_{i=1}p_i(t)x(t-\delta_i)-\sum^n_{i=1}q_i(t)x(t-\sigma_i)=0$$ and $$\left[x(t)+\sum^l_{i=1}c_i(t)x(t-\tau_i)\right]''+\sum^m_{i=1}p_i(t)x(t-\delta_i)-\sum^n_{i=1}q_i(t)x(t-\sigma_i)=f(t).$$ They improve the one recently established by [{\it J. Manojlovic, Y. Shoukaku, T. Tanigawa}, and {\it N. Yoshida}, Appl. Math. Comp. 181, 853--863 (2006; Zbl 1110.34046)].

34K11Oscillation theory of functional-differential equations
Full Text: DOI
[1] Manojlovic, J.; Shoukaku, Y.; Tanigawa, T.; Yoshida, N.: Oscillation criteria for second order differential equations with positive and negative coefficients. Appl. math. Comp. 181, 853-863 (2006) · Zbl 1110.34046
[2] Shi, W.; Wang, P.: Oscillatory criteria of a class of second-order neutral functional differential equations. Applied. math. Comp. 146, 211-226 (2003) · Zbl 1037.34059
[3] Wang, P.: Oscillation criteria for second-order neutral equations with distributed deviating arguments. J. comp. Math. appl. 47, 1935-1946 (2004) · Zbl 1070.34086
[4] Lee, C.; Yeh, C.: An oscillation theorem. Appl. math. Lett. 20, 238-240 (2007) · Zbl 1114.34327
[5] Sun, Y.: Oscillation of second order functional differential equations with distributed damping. Appl. math. Comp. 178, 519-526 (2006) · Zbl 1105.34326
[6] Wang, P.; Wu, Y.: Oscillation of certain second-order functional differential equations with damping. J. comp. Appl. math. 157, 49-56 (2003) · Zbl 1032.34066
[7] Erbe, L.; Kong, Q.; Zheng, B.: Oscillation theory for functional differential equations. (1995)
[8] Agarwal, R.; Grace, S.; Regan, D.: Oscillation theory for difference and functional differential equations. (2000)