zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dynamics of rotating Bose-Einstein condensates and its efficient and accurate numerical computation. (English) Zbl 1141.35052
Summary: In this paper, we study the dynamics of rotating Bose-Einstein condensates (BEC) based on the Gross-Pitaevskii equation (GPE) with an angular momentum rotation term and present an efficient and accurate algorithm for numerical simulations. We examine the conservation of the angular momentum expectation and the condensate width and analyze the dynamics of a stationary state with a shift in its center. By formulating the equation in either the two-dimensional polar coordinate system or the three-dimensional cylindrical coordinate system, the angular momentum rotation term becomes a term with constant coefficients. This allows us to develop an efficient time-splitting method which is time reversible, unconditionally stable, efficient, and accurate for the problem. Moreover, it conserves the position density. We also apply the numerical method to study issues such as the stability of central vortex states and the quantized vortex lattice dynamics in rotating BEC.

35Q55NLS-like (nonlinear Schrödinger) equations
65N35Spectral, collocation and related methods (BVP of PDE)
82C10Quantum dynamics and nonequilibrium statistical mechanics (general)
Full Text: DOI