zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The generalized synchronization of a quantum-CNN chaotic oscillator with different order systems. (English) Zbl 1141.37017
Summary: This paper presents a special kind of the generalized synchronization of different order systems, proved by a Lyapunov asymptotic stability theorem. A sufficient condition is given for the asymptotic stability of the null solution of an error dynamics. The generalized synchronization developed may be applied to the design of secure communication. Finally, numerical results are studied for a quantum-CNN oscillator synchronized with three different order systems respectively to show the effectiveness of the proposed synchronization strategy.

MSC:
37D45Strange attractors, chaotic dynamics
94A05Communication theory
94C05Analytic circuit theory
93D05Lyapunov and other classical stabilities of control systems
WorldCat.org
Full Text: DOI
References:
[1] Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic system, Phys rev lett 64, 821-824 (1990) · Zbl 0938.37019
[2] Wang, C.; Ge, S. S.: Adaptive synchronization of uncertain chaotic systems via backstepping design, Chaos, solitons & fractals 12, 1199-1206 (2001) · Zbl 1015.37052
[3] Femat, R.; Ramirez, J. A.; Anaya, G. F.: Adaptive synchronization of high-order chaotic systems: a feedback with low-order parameterization, Physica 139, 231-246 (2000) · Zbl 0954.34037 · doi:10.1016/S0167-2789(99)00226-2
[4] Morgul, O.; Feki, M.: A chaotic masking scheme by using synchronized chaotic systems, Phys lett A 251, 169-176 (1999)
[5] Femat, R.; Perales, G. S.: On the chaos synchronization phenomenon, Phys lett 262, 50-60 (1999) · Zbl 0936.37010 · doi:10.1016/S0375-9601(99)00667-2
[6] Abarbaned, H. D. I.; Rulkov, N. F.; Sushchik, M. M.: Generalized synchronization of chaos: the auxiliary systems, Phys rev 53, 4528-4535 (1996)
[7] Yang, S. S.; Duan, C. K.: Generalized synchronization in chaotic systems, Chaos, solitons & fractals 9, 1703-1707 (1998) · Zbl 0946.34040 · doi:10.1016/S0960-0779(97)00149-5
[8] Yang, X. S.: Concepts of synchronization in dynamic systems, Phys lett A 260, 340-344 (1999) · Zbl 0939.34041 · doi:10.1016/S0375-9601(99)00532-0
[9] Yang, X. S.: A framework for synchronization theory, Chaos, solitons & fractals 11, 1365-1368 (2000) · Zbl 0999.34053
[10] Chen, M. -Y.; Han, Z. -Z.; Shang, Y.: General synchronization of Genesio -- Tesi system, Int J bifurcation chaos 14, No. 1, 347-354 (2004) · Zbl 1085.93023 · doi:10.1142/S0218127404009077
[11] Luigi, Fortuna; Domenico, Porto: Quantum-CNN to generate nanoscale chaotic oscillator, Int J bifurcation chaos 14, No. 3, 1085-1089 (2004) · Zbl 1086.37503 · doi:10.1142/S0218127404009624
[12] Chen, S.; Zhang, Q.; Xie, J.; Wang, C.: A stable-manifold-based method for chaos control and synchronization, Chaos, solitons & fractals 20, No. 5, 947-954 (2004) · Zbl 1050.93032 · doi:10.1016/j.chaos.2003.09.021
[13] Chen, S.; Lu, J.: Synchronization of uncertain unified chaotic system via adaptive control, Chaos, solitons & fractals 14, No. 4, 643-647 (2002) · Zbl 1005.93020 · doi:10.1016/S0960-0779(02)00006-1
[14] Liao, T.: Adaptive synchronization of two Lorenz systems, Chaos, solitons & fractals 9, No. 9, 1555-1561 (1998) · Zbl 1047.37502
[15] Bai, E.; Lonngren, K.: Sequential synchronization of two Lorenz systems using active control, Chaos, solitons & fractals 11, No. 7, 1041-1044 (2000) · Zbl 0985.37106 · doi:10.1016/S0960-0779(98)00328-2
[16] Jiang, G. P.; Tang, K. S.; Chen, G. R.: A simple global synchronization criterion for coupled chaotic systems, Chaos, solitons & fractals 15, 925-935 (2003) · Zbl 1065.70015 · doi:10.1016/S0960-0779(02)00214-X
[17] Zheng-Ming, Ge; Jui-Wen, Cheng; Yen-Sheng, Chen: Chaos anticontrol and synchronization of three time scales brushless DC motor system, Chaos, solitons & fractals 22, 1165-1182 (2004) · Zbl 1060.93549 · doi:10.1016/j.chaos.2004.03.036
[18] Zheng-Ming, Ge; Ching-I, Lee: Control, anticontrol and synchronization of chaos for an autonomous rotational machine system with time-delay, Chaos, solitons & fractals 23, 1855-1864 (2004) · Zbl 1061.93502 · doi:10.1016/j.chaos.2004.07.023
[19] Ge, Z. -M.; Chang, C. -M.: Chaos synchronization and parameters identification of single time scale brushless DC motors, Chaos, solitons & fractals 20, 883-903 (2004) · Zbl 1071.34048 · doi:10.1016/j.chaos.2003.10.005
[20] Zheng-Ming, Ge; Chien-Cheng, Chen: Phase synchronization of coupled chaotic multiple time scales systems, Chaos, solitons & fractals 20, 639-647 (2004) · Zbl 1069.34056 · doi:10.1016/j.chaos.2003.08.001
[21] Zheng-Ming, Ge; Wei-Ying, Leu: Chaos synchronization and parameter identification for identical system, Chaos, solitons & fractals 21, 1231-1247 (2004) · Zbl 1060.93523
[22] Zheng-Ming, Ge; Wei-Ying, Leu: Anti-control of chaos of two-degrees-of-freedom louderspeaker system and chaos synchronization of different order systems, Chaos, solitons & fractals 20, 503-521 (2004) · Zbl 1048.37077 · doi:10.1016/j.chaos.2003.07.001
[23] Zheng-Ming, Ge; Yen-Sheng, Chen: Synchronization of unidirectional coupled chaotic systems via partial stability, Chaos, solitons & fractals 21, 101-111 (2004) · Zbl 1048.37027 · doi:10.1016/j.chaos.2003.10.004
[24] Liu, F.; Ren, Y.; Shan, X.; Qiu, Z.: A linear feedback synchronization theorem for a class of chaotic systems, Chaos, solitons & fractals 13, No. 4, 723-730 (2002) · Zbl 1032.34045 · doi:10.1016/S0960-0779(01)00011-X
[25] Lü, J.; Zhou, T.; Zhang, S.: Chaos synchronization between linearly coupled chaotic systems, Chaos, solitons & fractals 14, No. 4, 529-541 (2002) · Zbl 1067.37043 · doi:10.1016/S0960-0779(02)00005-X
[26] Krawiecki, A.; Sukiennicki, A.: Generalizations of the concept of marginal synchronization of chaos, Chaos, solitons & fractals 11, No. 9, 1445-1458 (2000) · Zbl 0982.37022 · doi:10.1016/S0960-0779(99)00062-4
[27] Lu, J.; Xi, Y.: Linear generalized synchronization of continuous-time chaotic systems, Chaos, solitons & fractals 17, 825-831 (2003) · Zbl 1043.93518 · doi:10.1016/S0960-0779(02)00471-X
[28] Xue, Y. -J.; Yang, S. -Y.: Synchronization of generalized henon map by using adaptive fuzzy controller, Chaos, solitons & fractals 17, 717-722 (2003) · Zbl 1043.93519 · doi:10.1016/S0960-0779(02)00490-3
[29] Yang, X. -S.; Chen, G.: Some observer-based criteria for discrete-time generalized chaos synchronization, Chaos, solitons & fractals 13, 1303-1308 (2002) · Zbl 1006.93580 · doi:10.1016/S0960-0779(01)00127-8
[30] Terry, J. R.; Van Wiggeren, G. D.: Chaotic communication using generalized synchronization, Chaos, solitons & fractals 12, 145-152 (2001)
[31] Yang, S. S.; Duan, C. K.: Generalized synchronization in chaotic systems, Chaos, solitons & fractals 9, 1703-1707 (1998) · Zbl 0946.34040 · doi:10.1016/S0960-0779(97)00149-5