zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Extreme points and strong U-points in Musieł ak-Orlicz sequence spaces equipped with the Orlicz norm. (English) Zbl 1141.46008
Summary: We give some criteria for extreme points and strong U-points in Musieł ak-Orlicz sequence spaces equipped with the Orlicz norm. It follows from these results that the notion of strong U-point is essentially stronger than the notion of an extreme point in these spaces.

46B20Geometry and structure of normed linear spaces
46A45Sequence spaces
Full Text: DOI
[1] Cao, L. and Wang, T., Some notes on k(x) = \emptyset in Musielak-Orlicz spaces (in Chinese). Natur. Sci. J. Harbin Normal Univ. 16 (2000)(4), 1 - 4. · Zbl 1044.46516
[2] Chen, S., Geometry of Orlicz spaces. Dissertationes Math. 356, Warsaw 1996. · Zbl 1089.46500
[3] Cui, Y., Yan, L. and Meng, C., Strong U-point of Orlicz spaces equipped with Orlicz norm (in Chinese). Banyan J. Math. 4 (1997), 45 - 58.
[4] Cui, Y., Hudzik, H. and Meng, C., On some local geometry of Orlicz sequence spaces equipped with the Luxemburg norm. Acta Math. Hungar. 80 (1998)(1- 2), 143 - 154. · Zbl 0914.46004 · doi:10.1023/A:1006533011548
[5] Cui Y., Hudzik H. and Pluciennik R., Extreme points and strongly extreme points, in Orlicz spaces equipped with the Orlicz norm. Z. Anal. Anwendun- gen 22 (2003)(4), 789 - 817. · Zbl 1060.46020 · doi:10.4171/ZAA/1174
[6] Hudzik, H. and Zb?aszyniak, Z., Smoothness of Musielak-Orlicz spaces equip- ped with the Orlicz norm. Fourth International Conference on Function Spaces (Zielona Góra 1995). Collect Math. 48 (1997)(4-6), 543 - 561. 101
[7] Kamińska, A., Strict convexity of sequence Orlicz-Musielak spaces with Orlicz norm. J. Funct. Anal. 50 (1983), 285 - 305. · Zbl 0513.46009 · doi:10.1016/0022-1236(83)90006-X
[8] Lindenstrauss, J. and Tzafriri, L., Classical Banach Spaces I. Ergeb. Math. Grenzgeb., Vol. 92. Berlin: Springer 1977. · Zbl 0362.46013
[9] Maligranda, L., Orlicz Spaces and Interpolation. Seminars in Math. 5. Univer- sidade Estadual de Campinas 1989. · Zbl 0874.46022
[10] Musielak, J., Orlicz Spaces and Modular Spaces. Lecture Notes in Math. 1034. Berlin: Springer 1983. · Zbl 0557.46020 · doi:10.1007/BFb0072210
[11] Wisla, M., Strongly extreme points in Orlicz sequence spaces. Ann. Sci. Math. Polon., Comm. Math. 41 (2001), 241 - 255. · Zbl 1005.46003
[12] Wu, C. X. and Sun, H. Y., Norm calculation and complex convexity of the Musielak-Orlicz sequence space. Chinese Ann. Math. A12 (1991), 98 - 102. · Zbl 0782.46024