×

On the construction of gap functions for variational inequalities via conjugate duality. (English) Zbl 1141.49303

Summary: We deal with the construction of gap functions for variational inequalities by using an approach which bases on the conjugate duality. Under certain assumptions we also investigate a further class of gap functions for the variational inequality problem, the so-called dual gap functions.

MSC:

49J40 Variational inequalities
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1080/01630568908816335 · Zbl 0678.49010 · doi:10.1080/01630568908816335
[2] Auslender A., Optimisation: Méthods Numériques (1976)
[3] DOI: 10.1006/jmaa.1997.5608 · Zbl 0945.49004 · doi:10.1006/jmaa.1997.5608
[4] Ekeland I., Convex Analysis and Variational Problems (1976) · Zbl 0322.90046
[5] Facchinei F., Springer Series in Operations Research, in: Finite-Dimensional Variational Inequalities and Complementarity Problems (2003)
[6] DOI: 10.1007/BF01585696 · Zbl 0756.90081 · doi:10.1007/BF01585696
[7] DOI: 10.1007/978-1-4899-0289-4_11 · doi:10.1007/978-1-4899-0289-4_11
[8] DOI: 10.1007/BF02032131 · Zbl 0844.90069 · doi:10.1007/BF02032131
[9] DOI: 10.1201/9781420018868 · doi:10.1201/9781420018868
[10] DOI: 10.1007/BF01582255 · Zbl 0734.90098 · doi:10.1007/BF01582255
[11] DOI: 10.1016/0167-6377(82)90049-9 · Zbl 0486.90070 · doi:10.1016/0167-6377(82)90049-9
[12] Kinderlehrer Dr., Pure and Applied Mathematics 88, in: An Introduction to Variational Inequalities and Their Applications (1980)
[13] DOI: 10.1155/S1110757X02106012 · Zbl 1029.47043 · doi:10.1155/S1110757X02106012
[14] DOI: 10.1007/BF01582565 · Zbl 0819.65101 · doi:10.1007/BF01582565
[15] DOI: 10.1137/S1052623496309867 · Zbl 1032.90050 · doi:10.1137/S1052623496309867
[16] Peng J. M., Mathematical Programming A 78 pp 347–
[17] DOI: 10.1016/0362-546X(92)90125-X · Zbl 0768.49008 · doi:10.1016/0362-546X(92)90125-X
[18] DOI: 10.1137/1.9781611970524 · doi:10.1137/1.9781611970524
[19] DOI: 10.1023/A:1022660704427 · Zbl 0879.90180 · doi:10.1023/A:1022660704427
[20] DOI: 10.1023/A:1022422407705 · Zbl 1027.49004 · doi:10.1023/A:1022422407705
[21] DOI: 10.1007/s00245-003-0771-9 · Zbl 1048.49007 · doi:10.1007/s00245-003-0771-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.