zbMATH — the first resource for mathematics

On the multiplicative structure of topological Hochschild homology. (English) Zbl 1141.55005
The authors prove that if \(R\) is an \(E_n\)-ring spectrum, then the topological Hochschild homology is an \(E_{n-1}\)-ring spectrum. This is shown by proving that (1) \(\mathcal Ass\otimes\mathcal C_{n-1}\) is an \(E_n\)-operad, and (2) there is a chain \(Y_R\gets X_R\to R\) of \(E_n\)-ring maps that are equivalences of spectra and such that \(Y_R\) is an \(\mathcal Ass\otimes\mathcal C_{n-1}\)-algebra where \(\mathcal Ass\) is the associative operad and \(\mathcal C_{n-1}\) is the little \(n-1\)-cube operad. One then gets a chain \(THH(Y_R)\gets THH(X_R)\to THH(R)\) of equivalences where \(THH(Y_R)\) is manifestly an \(E_{n-1}\)-ring spectrum. The proof of (1) uses a variant of Berger’s idea for a cellular decomposition of \(\mathcal C_{n-1}\) to describe \(\mathcal Ass\otimes\mathcal C_{n-1}\). The proof of (2) follows from this by a monoadic bar construction argument. That \(THH\) of an \(E_n\)-ring spectrum is an \(E_{n-1}\)-ring spectrum has been claimed independently by Basterra and Mandell.

55P43 Spectra with additional structure (\(E_\infty\), \(A_\infty\), ring spectra, etc.)
18D50 Operads (MSC2010)
Full Text: DOI arXiv
[1] C Balteanu, Z Fiedorowicz, R Schwänzl, R Vogt, Iterated monoidal categories, Adv. Math. 176 (2003) 277 · Zbl 1030.18006
[2] M Basterra, M Mandell, The multiplication on \(MU\) and \(BP\), to appear · Zbl 1317.55005
[3] C Berger, Combinatorial models for real configuration spaces and \(E_n\)-operads (editors J L Loday, J D Stasheff, A A Voronov), Contemp. Math. 202, Amer. Math. Soc. (1997) 37 · Zbl 0860.18001
[4] J M Boardman, R M Vogt, Homotopy-everything \(H\)-spaces, Bull. Amer. Math. Soc. 74 (1968) 1117 · Zbl 0165.26204
[5] J M Boardman, R M Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics 347, Springer (1973) · Zbl 0285.55012
[6] J M Boardman, R M Vogt, Tensor products of theories, application to infinite loop spaces, J. Pure Appl. Algebra 14 (1979) 117 · Zbl 0406.18001
[7] A Dold, Die Homotopieerweiterungseigenschaft \((=\mathrm{HEP})\) ist eine lokale Eigenschaft, Invent. Math. 6 (1968) 185 · Zbl 0167.51604
[8] A D Elmendorf, I Kriz, M A Mandell, J P May, Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs 47, American Mathematical Society (1997) · Zbl 0894.55001
[9] Z Fiedorowicz, Constructions of \(E_n\) Operads (1999) 34
[10] M Kontsevich, Operads and motives in deformation quantization, Lett. Math. Phys. 48 (1999) 35 · Zbl 0945.18008
[11] M Kontsevich, Y Soibelman, Deformations of algebras over operads and the Deligne conjecture, Math. Phys. Stud. 21, Kluwer Acad. Publ. (2000) 255 · Zbl 0972.18005
[12] J Lillig, A union theorem for cofibrations, Arch. Math. \((\)Basel\()\) 24 (1973) 410 · Zbl 0274.55008
[13] J McClure, R Schwänzl, R Vogt, \(\mathrm{THH}(R)\cong R\otimes S^1\) for \(E_{\infty}\) ring spectra, J. Pure Appl. Algebra 121 (1997) 137 · Zbl 0885.55004
[14] J E McClure, J H Smith, A solution of Deligne’s Hochschild cohomology conjecture, Contemp. Math. 293, Amer. Math. Soc. (2002) 153 · Zbl 1009.18009
[15] D E Tamarkin, Another proof of M. Kontsevich formality theorem
[16] D E Tamarkin, Formality of chain operad of little discs, Lett. Math. Phys. 66 (2003) 65 · Zbl 1048.18007
[17] R M Vogt, Convenient categories of topological spaces for homotopy theory, Arch. Math. \((\)Basel\()\) 22 (1971) 545 · Zbl 0237.54001
[18] R M Vogt, Cofibrant operads and universal \(E_{\infty}\) operads, Topology Appl. 133 (2003) 69 · Zbl 1076.18007
[19] A A Voronov, Homotopy Gerstenhaber algebras, Math. Phys. Stud. 22, Kluwer Acad. Publ. (2000) 307 · Zbl 0974.16005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.