zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Estimation of penalty parameters for symmetric interior penalty Galerkin methods. (English) Zbl 1141.65078
The numerical approximation of a linear elliptic problem by the discontinuous Galerkin method is considered. Computable lower bounds for the penalty parameters are presented.

65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
65N12Stability and convergence of numerical methods (BVP of PDE)
35J25Second order elliptic equations, boundary value problems
Full Text: DOI
[1] D.N. Arnold, An interior penalty finite element method with discontinuous elements, Ph.D. Thesis, The University of Chicago, 1979.
[2] Arnold, D. N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. anal. 19, 742-760 (1982) · Zbl 0482.65060
[3] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. anal. 39, No. 5, 1749-1779 (2002) · Zbl 1008.65080
[4] Babus&breve, I.; Ka: The finite element method with penalty. Math. comput. 27, 221-228 (1973)
[5] Babus&breve, I.; Ka; Zlamal, M.: Nonconforming elements in the finite element method with penalty. SIAM J. Numer. anal. 10, 863-875 (1973) · Zbl 0237.65066
[6] Baker, G. A.: Finite element methods for elliptic equations using nonconforming elements. Math. comput. 31, No. 137, 45-59 (1977) · Zbl 0364.65085
[7] Baker, G. A.; Jureidini, W. N.; Karakashian, O. A.: Piecewise solenoidal vector fields and the Stokes problem. SIAM J. Numer. anal. 27, 1466-1485 (1990) · Zbl 0719.76047
[8] Becker, R.; Hansbo, P.; Stenberg, R.: A finite element method for domain decomposition with non-matching grids. M2AN math. Model. numer. Anal. 37, 209-225 (2003) · Zbl 1047.65099
[9] Ciarlet, P.: The finite element method for elliptic problems. (1978) · Zbl 0383.65058
[10] B. Cockburn, G.E. Karniadakis, C.-W. Shu (Eds.), First International Symposium on Discontinuous Galerkin Methods, Lecture Notes in Computational Science and Engineering, vol. 11, Springer, Berlin, 2000. · Zbl 0935.00043
[11] Dawson, C.; Sun, S.; Wheeler, M. F.: Compatible algorithms for coupled flow and transport. Comput. meth. Appl. mech. Eng. 193, 2565-2580 (2004) · Zbl 1067.76565
[12] J. Douglas, T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods, Lecture Notes in Physics, vol. 58, Springer, Berlin, 1976.
[13] A. Ern, J.-L. Guermond, Theory and practice of finite elements, Applied Mathematical Sciences, vol. 159, Springer, Berlin, 2003.
[14] Girault, V.; Rivière, B.; Wheeler, M. F.: A discontinuous Galerkin method with non-overlapping domain decomposition for the Stokes and Navier -- Stokes problems. Math. comput. 74, 53-84 (2005) · Zbl 1057.35029
[15] Houston, P.; Schwab, C.; Süli, E.: Discontinuous hp-finite element methods for advection -- diffusion reaction problems. SIAM J. Numer. anal. 39, No. 6, 2133-2163 (2002) · Zbl 1015.65067
[16] Karakashian, O. A.; Jureidini, W.: A nonconforming finite element method for the stationary Navier -- Stokes equations. SIAM J. Numer. anal. 35, 93-120 (1998) · Zbl 0933.76047
[17] Kaya, S.; Rivière, B.: A discontinuous subgrid eddy viscosity method for the time-dependent Navier -- Stokes equations. SIAM J. Numer. anal. 43, No. 4, 1572-1595 (2005) · Zbl 1096.76026
[18] Lee, J. R.: The law of cosines in a tetrahedron. J. Korea soc. Math. ed. Ser. B: pure appl. Math. 4, 1-6 (1997)
[19] Nitsche, J. A.: Uber ein variationsprinzip zur losung von Dirichlet-problemen bei verwendung von teilraumen, die keinen randbedingungen unteworfen sind. Abh. math. Sem. univ. Hamburg 36, 9-15 (1971) · Zbl 0229.65079
[20] Rivière, B.; Girault, V.: Discontinuous finite element methods for incompressible flows on subdomains with non-matching interfaces. Comput. meth. Appl. mech. Eng. 195, 3274-3292 (2006) · Zbl 1121.76038
[21] Rivière, B.; Wheeler, M. F.; Girault, V.: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. anal. 39, No. 3, 902-931 (2001) · Zbl 1010.65045
[22] Rivière, B.; Yotov, I.: Locally conservative coupling of Stokes and Darcy flow. SIAM J. Numer. anal. 42, No. 5, 1959-1977 (2005) · Zbl 1084.35063
[23] Sun, S.; Wheeler, M. F.: Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media. SIAM J. Numer. anal. 43, No. 1, 195-219 (2005) · Zbl 1086.76043
[24] Warburton, T.; Hesthaven, J. S.: On the constants in hp-finite element trace inverse inequalities. Comput. meth. Appl. mech. Eng. 192, 2765-2773 (2003) · Zbl 1038.65116
[25] Wheeler, M. F.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. anal. 15, No. 1, 152-161 (1978) · Zbl 0384.65058