zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Variational iteration method for solving integral equations. (English) Zbl 1141.65400
Summary: Several integral equations are solved by the variational iteration method. Comparison with exact solution shows that the method is very effective and convenient for solving integral equations.

MSC:
65R20Integral equations (numerical methods)
45D05Volterra integral equations
45B05Fredholm integral equations
45G10Nonsingular nonlinear integral equations
WorldCat.org
Full Text: DOI
References:
[1] Wazwaz, A. M.: Two methods for solving integral equations. Applied mathematics and computation 77, 79-89 (1996) · Zbl 0846.65077
[2] Wazwaz, A. M.: A reliable treatment for mixed Volterra--Fredholm integral equations. Applied mathematics and computation 127, 405-414 (2002) · Zbl 1023.65142
[3] He, J. H.: Variational iteration method--a kind of nonlinear analytical technique: some examples. International journal of nonlinear mechanics 34, No. 4, 699-708 (1999) · Zbl 05137891
[4] He, J. H.: A review on some new recently developed nonlinear analytical techniques. International journal of nonlinear science numerical simulation 1, No. 1, 51-70 (2000) · Zbl 0966.65056
[5] He, J. H.: Some asymptotic methods for strongly nonlinear equations. International journal of modern physics B 20, No. 10, 1141-1199 (2006) · Zbl 1102.34039
[6] He, J. H.: Non-perturbative methods for strongly nonlinear problems. (2006)
[7] J.-H. He, Variational iteration method--some recent results and new interpretations, Journal of Computational and Applied Mathematics (in press) · Zbl 1119.65049
[8] He, J. H.; Wu, X. H.: Construction of solitary solution and compacton-like solution by variational iteration method. Chaos, solitons and fractals 29, No. 1, 108-113 (2006) · Zbl 1147.35338
[9] He, J. H.: Variational iteration method for autonomous ordinary differential systems. Applied mathematics and computation 114, No. 2--3, 115-123 (2000) · Zbl 1027.34009
[10] Bildik, N.; Konuralp, A.: The use of variational iteration method, differential transform method and Adomian decomposition method for solving different types of nonlinear partial differential equations. International journal of nonlinear sciences and numerical simulation 7, No. 1, 65-70 (2006) · Zbl 1115.65365
[11] Momani, S.; Abuasad, S.: Application of he’s variational iteration method to Helmholtz equation. Chaos, solitons and fractals 27, No. 5, 1119-1123 (2006) · Zbl 1086.65113
[12] Odibat, Z. M.; Momani, S.: Application of variational iteration method to nonlinear differential equations of fractional order. International journal of nonlinear sciences and numerical simulation 7, No. 1, 27-34 (2006) · Zbl 05675858
[13] M. Dehghan, M. Tatari, Identifying an unknown function in a parabolic equation with overspecified data via He’s variational iteration method, Chaos, Solitons and Fractals (in press) · Zbl 1152.35390
[14] Mustafa Inc, Numerical simulation of KdV and mKdV equations with initial conditions by the variational iteration method, Chaos, Solitons and Fractals (in press) · Zbl 1142.35572
[15] Soliman, A. A.: A numerical simulation and explicit solutions of KdV-Burgers and Lax’s seventh-order KdV equations. Chaos, solitons and fractals 29, No. 2, 294-302 (2006) · Zbl 1099.35521
[16] Abulwafa, E. M.; Abdou, M. A.; Mahmoud, A. A.: The solution of nonlinear coagulation problem with mass loss. Chaos, solitons and fractals 29, No. 2, 313-330 (2006) · Zbl 1101.82018
[17] Moghimi, M.; Hejazi, F. S. A.: Variational iteration method for solving generalized burger--Fisher and burger equations. Chaos, solitons and fractals 33, No. 5, 1756-1761 (2007) · Zbl 1138.35398
[18] Tatari, M.; Dehghan, M.: He’s variational iteration method for computing a control parameter in a semi-linear inverse parabolic equation. Chaos, solitons and fractals 33, No. 2, 671-677 (2007) · Zbl 1131.65084
[19] Abulwafa, E. M.; Abdou, M. A.; Mahmoud, A. A.: Nonlinear fluid flows in pipe-like domain problem using variational-iteration method. Chaos, solitons and fractals 32, No. 4, 1384-1397 (2007) · Zbl 1128.76019
[20] Sweilam, N. H.; Khader, M. M.: Variational iteration method for one dimensional nonlinear thermoelasticity. Chaos, solitons and fractals 32, No. 1, 145-149 (2007) · Zbl 1131.74018
[21] Momani, S.; Odibat, Z.: Numerical comparison of methods for solving linear differential equations of fractional order. Chaos, solitons and fractals 31, No. 5, 1248-1255 (2007) · Zbl 1137.65450
[22] A.-M. Wazwaz, The variational iteration method for rational solutions for KdV, K(2,2), Burgers, and cubic Boussinesq equations, Journal of Computational and Applied Mathematics (in press)
[23] S. Momani, Z. Odibat, Numerical approach to differential equations of fractional order, Journal of Computational and Applied Mathematics (in press) · Zbl 1119.65127
[24] A.A. Soliman, M.A. Abdou, Numerical solutions of nonlinear evolution equations using variational iteration method, Journal of Computational and Applied Mathematics (in press) · Zbl 1120.65111
[25] M. Tatari, M. Dehghan, On the convergence of He’s variational iteration method, Journal of Computational and Applied Mathematics (in press) · Zbl 1120.65112
[26] N.H. Sweilam, Variational iteration method for solving cubic nonlinear Schrödinger equation, Journal of Computational and Applied Mathematics (in press) · Zbl 1119.65098