Glowinski, R.; Dean, E. J.; Guidoboni, G.; Juárez, L. H.; Pan, T.-W. Applications of operator-splitting methods to the direct numerical simulation of particulate and free-surface flows and to the numerical solution of the two-dimensional elliptic Monte-Ampère equation. (English) Zbl 1141.76043 Japan J. Ind. Appl. Math. 25, No. 1, 1-63 (2008). Summary: We review some recent applications of operator-splitting methods. We show that these methods are well-suited to the numerical solution of outstanding problems from various areas in mechanics, physics and differential geometry, such as the direct numerical simulation of particulate flow, free boundary problems with surface tension for incompressible viscous fluids, and elliptic real Monge-Ampère equation. The results of numerical experiments illustrate the capabilities of these methods. Cited in 18 Documents MSC: 76M20 Finite difference methods applied to problems in fluid mechanics 76M10 Finite element methods applied to problems in fluid mechanics 76T99 Multiphase and multicomponent flows 76D45 Capillarity (surface tension) for incompressible viscous fluids 65N99 Numerical methods for partial differential equations, boundary value problems Keywords:free boundary problems; surface tension; incompressible viscous fluids × Cite Format Result Cite Review PDF Full Text: DOI References: [1] G. Allain, Small-time existence for the Navier-Stokes equations with a free surface. Appl. Math. Optim.,16 (1987), 37–50. · Zbl 0655.76021 · doi:10.1007/BF01442184 [2] E. Bänsch, Finite element discretization of the Navier-Stokes equations with a free capillary surface. Numer. Math.,88 (2001), 203–235. · Zbl 0985.35060 · doi:10.1007/PL00005443 [3] E. Bänsch and B. Hön, Numerical simulation of a silicon floating zone with a free capillary surface. Scientific Computing in Chemical Engineering II, Vol. 1, F. Keli, W. Mackens, H. Voss and J. Werther eds., 1999, 328–335. [4] J.T. Beale, The initial value problem for the Navier-Stokes equations with a free-surface. Comm. Pure Appl. Math.,34 (1981), 359–392. · Zbl 0464.76028 · doi:10.1002/cpa.3160340305 [5] M. Bercovier and O. Pironneau, Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer. Math.,33 (1979), 211–224. · Zbl 0423.65058 · doi:10.1007/BF01399555 [6] J.U. Brackbill, D.B. Kothe and C. Zemach, A continuum method for modeling surface tension. J. Comput. Phys.,100 (1992), 335–354. · Zbl 0775.76110 · doi:10.1016/0021-9991(92)90240-Y [7] A. Caboussat, Analysis and Numerical Simulation of Free Surface Flows. Ph.D. Dissertation, Ecole Polytechnique Fédérale de Lausanne, Department of Mathematics, Lausanne, Switzerland, 2003. [8] A. Caboussat, A numerical method for the simulation of free surface flows with surface tension. Comp. and Fluids,35 (2006), 1205–1216. · Zbl 1177.76254 · doi:10.1016/j.compfluid.2005.08.004 [9] L.A. Caffarelli and X. Cabré, Fully Nonlinear Elliptic Equations. American Mathematical Society, Providence, RI, 1995. [10] L.A. Caffarelli and M. Milman, eds., Monge-Ampère Equation: Application to Geometry and Optimization. American Math. Society, Providence, RI, 1999. [11] T.F. Chan and R. Glowinski, Numerical methods for a class of mildly nonlinear elliptic equations. Atas do Decimo Primeiro Coloquio Brasileiro do Matematicas, Vol. I, C.N.D.T./IMPA, Rio do Janeiro, 1978, 279–318. [12] A.J. Chorin, Numerical study of a slightly viscous flow. J. Fluid Mech.,57 (1973), 785–796. · doi:10.1017/S0022112073002016 [13] A.J. Chorin, T.J.R. Hughes, M.F. McCracken and J.E. Marsden, Product formulas and numerical algorithms. Comm. Pure Appl. Maths.,31 (1978), 205–256. · doi:10.1002/cpa.3160310205 [14] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. II. Wiley Interscience, New York, NY, 1989. · Zbl 0729.00007 [15] C. Cuvelier and R.M. Schulkes, Some numerical methods for the computation of capillary free boundaries governed by the Navier-Stokes equations. SIAM Review,32 (1990), 355–423. · Zbl 0706.76027 · doi:10.1137/1032077 [16] E.J. Dean and R. Glowinski, Numerical solution of the two-dimensional elliptic Monge-Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach. C.R. Acad. Sci. Paris, Sér. I,336 (2003), 779–784. · Zbl 1028.65120 · doi:10.1016/S1631-073X(03)00149-3 [17] E.J. Dean and R. Glowinski, Numerical solution of the two-dimensional elliptic Monge-Ampère equation with Dirichlet boundary conditions: a least squares approach. C.R. Acad. Sci. Paris, Sér. I,339 (2004), 887–892. · Zbl 1063.65121 · doi:10.1016/j.crma.2004.09.018 [18] E.J. Dean and R. Glowinski, Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type. Comp. Meth. Appl. Mech. Engin.,195 (2006), 1344–1386. · Zbl 1119.65116 · doi:10.1016/j.cma.2005.05.023 [19] E.J. Dean and R. Glowinski, A wave equation approach to the numerical solution of the Navier-Stokes equations for incompressible viscous flow. C.R. Acad. Sci. Paris, Ser. I,325 (1997), 789–797. · Zbl 0901.76054 [20] E.J. Dean, R. Glowinski and T.W. Pan, A wave equation approach to the numerical simulation of incompressible viscous flow modeled by the Navier-Stokes equations. Mathematical and Numerical Aspects of Wave Propagation, J.A. De Santo ed., SIAM, Philadelphia, PA, 1998, 65–74. · Zbl 0959.76070 [21] B. Desjardin and M.J. Esteban, On weak solution for fluid-rigid structure interaction: compressible and incompressible models. Arch. Rational Mech. Anal.,146 (1999), 59–71. · Zbl 0943.35063 · doi:10.1007/s002050050136 [22] J. Dieudonné, Panorama des Mathématiques Pures: Le Choix Bourbachique. Editions Jacques Gabay, Paris, 2003. [23] J. Douglas and H.H. Rachford, On the numerical solution of the heat conduction problem in 2 and 3 space variables. Trans. Am. Math. Soc.,82 (1956), 421–439. · Zbl 0070.35401 · doi:10.1090/S0002-9947-1956-0084194-4 [24] M. Fortin and R. Glowinski, Augmented Lagrangians Methods: Application to the Numerical Solution of Boundary-Value Problems. North-Holland, Amsterdam, 1983. · Zbl 0525.65045 [25] F. Foss, On the exact point-wise interior controllability of the scalar wave equation and solution of nonlinear elliptic eigenproblems. PhD dissertation, Department of Mathematics, University of Houston, Houston, Texas, 2006. [26] V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer-Verlag, Berlin, 1986. · Zbl 0585.65077 [27] R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer-Verlag, New York, NY, 1984. · Zbl 0536.65054 [28] R. Glowinski, Finite Element Methods for Incompressible Viscous Flow. Handbook of Numerical Analysis, Vol. IX, P.G. Ciarlet and J.L. Lions eds., North-Holland, Amsterdam, 2003, 3–1176. · Zbl 1040.76001 [29] R. Glowinski and G. Guidoboni, Hopf bifurcation in viscous incompressible flow down an inclined plane: a numerical approach. J. Math. Fluid Mech.,9 (2007), 1–21. · Zbl 1137.35051 · doi:10.1007/s00021-005-0189-z [30] R. Glowinski and L.H. Juárez, Finite element method and operator-splitting for a time-dependent viscous incompressible free-surface flow. Comp. Fluid Dyn. J.,12 (2003), 459–468. [31] R. Glowinski and P. Le Tallec, Augmented Lagrangians and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia, PA, 1989. · Zbl 0698.73001 [32] R. Glowinski, J.L. Lions and R. Tremolières, Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam, 1981. [33] R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph and J. Périaux, A fictitious domain approach to the direct numerical simulation of incompressible viscous fluid flow past moving rigid bodies: application to particulate flow. J. Comp. Phys.,169 (2001), 363–426. · Zbl 1047.76097 · doi:10.1006/jcph.2000.6542 [34] C. Grandmont and Y. Maday, Existence for an unsteady fluid-structure interaction problem. Math. Model. Num. Anal.,34 (2000), 609–636. · Zbl 0969.76017 · doi:10.1051/m2an:2000159 [35] H.H. Hu., N.A. Patankar and M.Y. Zhu, Direct numerical Simulation of fluid-solid systems using arbitrary Lagrangian–Eulerian techniques. J. Comp. Phys.,169 (2001), 427–462. · Zbl 1047.76571 · doi:10.1006/jcph.2000.6592 [36] A.A. Johnson and T.E. Tezduyar, Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comp. Meth. Appl. Mech. Eng.,119 (1994), 73–94. · Zbl 0848.76036 · doi:10.1016/0045-7825(94)00077-8 [37] A.A. Johnson and T. Tezduyar, 3-D simulations of fluid-particle interactions with the number of particles reaching 100. Comp. Methods Appl. Mech. Engrg.,145 (1997), 301–321. · Zbl 0893.76043 · doi:10.1016/S0045-7825(96)01223-6 [38] D.D. Joseph and L. Preziosi, Stability of rigid motions and coating films in bi-component flows of immiscible liquids. J. Fluid Mech.,185 (1987), 323–351. · Zbl 0633.76112 · doi:10.1017/S0022112087003197 [39] L.H. Juárez, P. Saavedra and M. Salazar, Computational study of a free-boundary model. Advances in Optimization and Numerical Analysis, S. Gomez and J.P. Hennart eds., Kluwer, Dortrecht, 1994, 245–260. · Zbl 0802.76043 [40] J.B. Keller and M.J. Miksis, Surface tension driven flows. SIAM J. Appl. Math.,43 (1983), 268–277. · Zbl 0511.76021 · doi:10.1137/0143018 [41] S.F. Kistler and L.E. Scriven, Coating flow theory by finite element methods and asymptotic analysis of the Navier-Stokes system. Inter. J. Numer. Meth. Fluids,4 (1984), 207–229. · Zbl 0555.76026 · doi:10.1002/fld.1650040302 [42] P. Le Tallec, Numerical methods for nonlinear three-dimensional elasticity. Handbook of Numerical Analysis, Vol. III, P.G. Ciarlet and J.L. Lions eds., North-Holland, Amsterdam, 1994, 465–622. · Zbl 0875.73234 [43] G.I. Marchuk, Splitting and alternating direction methods. Handbook of Numerical Analysis, Vol. I, P.G. Ciarlet and J.L. Lions eds., North-Holland, Amsterdam, 1990, 197–462. · Zbl 0875.65049 [44] M. Marion and R. Temam, Navier-Stokes equations. Handbook of Numerical Analysis, Vol. VI, P.G. Ciarlet and J.L. Lions eds., North-Holland, Amsterdam, 1998, 503–689. [45] V. Maronnier, M. Picasso and J. Rappaz, Numerical simulation of free-surface flows. J. Comp. Phys.,155 (1999), 439–455. · Zbl 0952.76070 · doi:10.1006/jcph.1999.6346 [46] V. Maronnier, M. Picasso and J. Rappaz, Numerical simulation of three dimensional free-surface flows. Int. J. Numer. Meth. Fluids,42 (2003), 697–716. · Zbl 1143.76539 · doi:10.1002/fld.532 [47] B. Maury, A characteristics-ALE method for the unsteady 3-D Navier-Stokes equations with a free-surface. Int. J. Comp. Fluids Dynamics,6 (1996), 175–188. · doi:10.1080/10618569608940780 [48] B. Maury, Direct simulation of 2-D fluid-particle flows in bi-periodic domains, J. Comp. Phys.,156 (1999), 325–351. · Zbl 0958.76045 · doi:10.1006/jcph.1999.6365 [49] G. Müller and A. Ostrogorsky, Convection in melt growth. Handbook of Crystal Growth 2B, D.T. Hurle ed., North-Holland, 1994, 709–819. [50] J.A. Nietsche, Free-boundary problems for Stokes flows and finite element/ methods. Ecuadiff 6, Lecture Notes in Math.,1192, Springer-Verlag, Berlin, 1986, 327–332. [51] T. Nishida, Y. Teramoto and H. Yoshihara, Hopf bifurcation in viscous incompressible flow down an inclined plane. J. Math. Fluid Mech.,7 (2005), 29–71. · Zbl 1065.35053 · doi:10.1007/s00021-004-0104-z [52] J.R. Ockendon, S. Howison, A. Lacey and A. Movchan, Applied Partial Differential Equations. Oxford University Press, Oxford, UK, 1999. · Zbl 0927.35001 [53] M. Padula and V.A. Solonikov, On Rayleigh-Taylor stability. Ann. Univ. Ferrara, Sez. VII, Sc. Mat., XLXI, 2000, 307–336. · Zbl 1001.76039 [54] T.W. Pan and R. Glowinski, A projection/wave-like equation method for the numerical simulation of incompressible viscous fluid flow modeled by the Navier-Stokes equations. Comput. Fluid Dyn. J.,9 (2000), 28–42. [55] T.W. Pan and R. Glowinski, Direct simulation of the motion of neutrally buoyant circular cylinders in plane Poiseuille flow. J. Comp. Phys.,181 (2002), 260–279. · Zbl 1178.76235 · doi:10.1006/jcph.2002.7123 [56] D.H. Peaceman and H.H. Rachford, The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math.,3 (1955), 28–41. · Zbl 0067.35801 · doi:10.1137/0103003 [57] O. Pironneau, Finite Element Methods for Fluids. J. Wiley, Chichester, U.K., 1989. · Zbl 0665.73059 [58] C. Pozrikidis, The flow of a liquid film along a periodic wall. J. Fluid Mech.,188 (1988), 275–300. · Zbl 0642.76041 · doi:10.1017/S0022112088000734 [59] W.G. Pritchard, Instability and chaotic behavior in a free-surface flow. J. Fluid Mech.,165 (1986), 1–60. · doi:10.1017/S0022112086002987 [60] W.G. Pritchard, L.R. Scott and S.J. Tavener, Numerical and asymptotic methods for certain viscous free-surface flows. Phil. Trans. Royal Soc. London, A,340 (1992), 1–45. · Zbl 0806.76022 · doi:10.1098/rsta.1992.0054 [61] V.V. Pukhnachëv, Hydrodynamic free-boundary problems. Nonlinear Partial Differential and their Applications, Collège de France Seminar, Paris, Vol.III, Pitman, Boston, 1982, 301–308. [62] P. Saavedra and L.R. Scott, Variational formulation of a model free-boundary problem. Math. Comp.,57 (1991), 451–475. · Zbl 0743.65097 · doi:10.1090/S0025-5718-1991-1094958-0 [63] H. Saito and L.E. Scriven, Study of coating flow by the finite element method. J. Comp. Phys.,42 (1981), 53–76. · Zbl 0466.76035 · doi:10.1016/0021-9991(81)90232-1 [64] J.A. San Martin, V. Starovoitov and M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal.,161 (2002), 113–147. · Zbl 1018.76012 · doi:10.1007/s002050100172 [65] D. Schwabe, Surface-tension driven flow in crystal growth melts. Crystal Growth Properties and Applications 11, Springer-Verlag, Berlin, 1988. [66] H. Sigurgeirson, A.M. Stuart and J. Wan, Collision detection for particles in flow. J. Comp. Phys.,172 (2001), 766–807. · Zbl 1158.82300 · doi:10.1006/jcph.2001.6858 [67] V.A. Solonikov, On the Stokes equations in domains with non-smooth boundaries and on viscous incompressible flow with a free surface. Nonlinear Partial Differential and their Applications, Collège de France Seminar, Paris, Vol. III, Pitman, Boston, 1982, 340–423. [68] G. Strang, On the construction and comparison of difference schemes. SIAM J. Numer. Anal.,5 (1968), 506–517. · Zbl 0184.38503 · doi:10.1137/0705041 [69] T.E. Tezduyar, Stabilized finite element formulations for incompressible flow computations. Adv. Appl. Mech.,28 (1992), 1–44. · Zbl 0747.76069 [70] T.E. Tezduyar, M. Behr, S. Mittal and J. Liou, A new strategy for finite element computations involving moving boundaries and interfaces–The deforming-spatial-domain/space-time procedure: computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comp. Meth. Appl. Mech. Eng.,94 (1992), 353–371. · Zbl 0745.76045 · doi:10.1016/0045-7825(92)90060-W [71] S. Turek, A comparative study of time-stepping techniques for the incompressible Navier-Stokes equations: from fully implicit nonlinear schemes to semi-implicit projection methods. Int. J. Numer. Meth. Fluids,22 (1996), 987–1011. · Zbl 0864.76052 · doi:10.1002/(SICI)1097-0363(19960530)22:10<987::AID-FLD394>3.0.CO;2-7 [72] M.W. Williams, D.B. Kothe and E.G. Puckett, Accuracy and convergence of continuum surface tension models. Fluid Dynamics at Interface, W. Shyy and R. Narayanan, eds., Cambridge University Press, 1999, 294–305. · Zbl 0979.76014 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.