zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Understanding supply chain dynamics: a chaos perspective. (English) Zbl 1141.90444
Summary: Variability in orders or inventories in supply chain systems is generally thought to be caused by exogenous random factors such as uncertainties in customer demand or lead time. Studies have shown, however, that orders or inventories may exhibit significant variability even if customer demand and lead time are deterministic. In this paper, we investigate how this class of variability, chaos, may occur in a multi-level supply chain and offer insights into how to manage relevant supply chain factors to eliminate or reduce system chaos. The supply chain is characterized by the classical beer distribution model with some modifications. We observe the supply chain dynamics under the influence of various factors: demand pattern, ordering policy, demand-information sharing, and lead time. Through proper decision-region formation, the effect of various factors on system chaos is investigated using a factorial design. The degree of system chaos is quantified using the Lyapunov exponent across all levels of the supply chain. This study shows that, to reduce the degree of chaos in the supply chain system, the adjustment parameters for both inventory and supply line discrepancies should be more comparable in magnitude. Counter-intuitively, in certain decision regions, sharing demand information can do more harm than good. Similar to the bullwhip effect observed previously in demand, we discover the phenomenon of “chaos-amplification” in inventory across supply chain levels.

MSC:
90B50Management decision making, including multiple objectives
37D45Strange attractors, chaotic dynamics
37N99Applications of dynamical systems
Software:
Vensim; MINITAB
WorldCat.org
Full Text: DOI
References:
[1] Cachon, G.; Fisher, M.: Supply chain inventory management and the value of shared information, Management science 46, 1032-1048 (2000) · Zbl 1232.90028 · doi:10.1287/mnsc.46.8.1032.12029
[2] Chen, F.; Samroengraja, R.: The stationary beer game, Production and operations management 9, 19-30 (2000)
[3] Chen, F.; Drezner, Z.; Ryan, J. K.; Simichi-Levi, D.: Quantifying the bullwhip effect in a single supply chain: the impact of forecasting, lead times, and information, Management science 46, 436-443 (2000) · Zbl 1231.90019 · doi:10.1287/mnsc.46.3.436.12069
[4] D’amours, S.; Montreuil, B.; Lefrancois, P.; Soumis, F.: Networked manufacturing: the impact of information sharing, International journal of production economics 58, 63-79 (1999)
[5] Feigenbaum, M. J.: Quantitative universality for a class of nonlinear transformations, Journal of statistical physics 19, 25-52 (1978) · Zbl 0509.58037 · doi:10.1007/BF01020332
[6] Forrester, J. W.: Industrial dynamics, (1961)
[7] Hilborn, R. C.: Chaos and nonlinear dynamics: an introduction for scientists and engineers, (1994) · Zbl 0804.58002
[8] Jarmain, W. E.: Problems in industrial dynamics, (1963)
[9] Karmarkar, U. S.: Lot sizes, lead times and in-process inventories, Management science 33, 409-418 (1987) · Zbl 0612.90068 · doi:10.1287/mnsc.33.3.409
[10] Larsen, E. R.; Morecroft, J. D. W.; Thomsen, J. S.: Complex behaviour in a production-distribution model, European journal of operational research 119, 61-74 (1999) · Zbl 0934.90031 · doi:10.1016/S0377-2217(98)90349-6
[11] Lee, H. L.; Padmanabhan, V.; Whang, S. J.: Information distortion in a supply chain: the bullwhip effect, Management science 43, 546-558 (1997) · Zbl 0888.90047 · doi:10.1287/mnsc.43.4.546
[12] Lee, H. L.; Padmanabhan, V.; Whang, S. J.: The bullwhip effect in supply chains, Sloan management review 38, 93-102 (1997)
[13] Lee, H. L.; So, K. C.; Tang, C. S.: The value of information sharing in a two-level supply chain, Management science 46, 626-643 (2000) · Zbl 1231.90044 · doi:10.1287/mnsc.46.5.626.12047
[14] Lorenz, E. N.: Deterministic nonperiodic flow, Journal of the atmospheric sciences 20, 130-141 (1963)
[15] Mandelbrot, B. B.: The fractal geometry of nature, (1982) · Zbl 0504.28001
[16] Minitab Incorporation, 2005. Minitab Release 14.2.
[17] Montgomery, D. C.: Introduction to statistical quality control, (2001) · Zbl 0997.62503
[18] Mosekilde, E.; Larsen, E. R.: Deterministic chaos in beer production-distribution model, System dynamics review 4, 131-147 (1988)
[19] Oke, A.; Szwejczewski, M.: The relationship between UK manufacturers’ inventory levels and supply, internal and market factors, International journal of production economics 93 -- 94, 151-160 (2005)
[20] Ryu, S. W.; Lee, K. K.: A stochastic inventory model of dual sourced supply chain with lead-time reduction, International journal of production economics 81 -- 82, 513-524 (2003)
[21] Simchi-Levi, D.; Zhao, Y.: The value of information sharing in a two-stage supply chain with production capacity constraints, Naval research logistics 50, 888-916 (2003) · Zbl 1055.90030 · doi:10.1002/nav.10094
[22] Sosnovtseva, O.; Mosekilde, E.: Torus destruction and chaos -- chaos intermittency in a commodity distribution chain, International journal of bifurcation and chaos 7, 1225-1242 (1997) · Zbl 0904.90094 · doi:10.1142/S0218127497000996
[23] Sprott, J. C.; Rowlands, G.: Chaos data analyzer: the professional version, (1995)
[24] Steckel, J. H.; Gupta, S.; Banerji, A.: Supply chain decision making: will shorter cycle times and shared point-of-Sale information necessarily help?, Management science 50, 458-464 (2004) · Zbl 1232.90095 · doi:10.1287/mnsc.1030.0169
[25] Sterman, J. D.: Modeling managerial behavior: misperceptions of feedback in a dynamic decision making experiment, Management science 35, 321-339 (1989)
[26] Thomsen, J. S.; Mosekilde, E.; Sterman, J. D.: Hyperchaotic phenomena in dynamic decision making, System analysis and modeling simulation 9, 137-156 (1992) · Zbl 0849.90004
[27] Treville, S.; Shapiro, R. D.; Hameri, A. P.: From supply chain to demand chain: the role of lead time reduction in improving demand chain performance, Journal of operations management 21, 613-627 (2004)
[28] Ventana Simulation Incorporation, 2003. Vensim DSS 32, Version 5.4.
[29] Wilding, R. D.: Chaos theory: implications for supply chain management, International journal of logistics management 9, 43-56 (1998)
[30] Williams, G. P.: Chaos theory tamed, (1997) · Zbl 1087.37500
[31] Wolf, A.; Swift, J. B. V.; Swinney, H. L.; Vastano, J. A.: Determining Lyapunov exponents from a time series, Physica D 16, 285-317 (1985) · Zbl 0585.58037 · doi:10.1016/0167-2789(85)90011-9
[32] Zhao, X. D.; Xie, J. X.; Leung, J.: The impact of forecasting model selection on the value of information sharing in a supply chain, European journal of operational research 142, 321-344 (2002) · Zbl 1082.90502 · doi:10.1016/S0377-2217(01)00300-9