zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the dual risk model with tax payments. (English) Zbl 1141.91481
Summary: We study the dual risk process in ruin theory [see e.g. {\it H. Cramér}, Collective risk theory: a survey of the theory from the point of view of the theory of stochastic processes. Stockholm: AB Nordiska Bokhandeln (1955); {\it L. Takács} [Combinatorial methods in the theory of stochastic processes. New York etc.: John Wiley (1967; Zbl 0162.21303) and {\it B. Avanzi} et al., Insur. Math. Econ. 41, No. 1, 111--123 (2007; Zbl 1131.91026)] in the presence of tax payments according to a loss-carry forward system. For arbitrary inter-innovation time distributions and exponentially distributed innovation sizes, an expression for the ruin probability with tax is obtained in terms of the ruin probability without taxation. Furthermore, expressions for the Laplace transform of the time to ruin and arbitrary moments of discounted tax payments in terms of passage times of the risk process are determined. Under the assumption that the inter-innovation times are (mixtures of) exponentials, explicit expressions are obtained. Finally, we determine the critical surplus level at which it is optimal for the tax authority to start collecting tax payments.

MSC:
91B30Risk theory, insurance
WorldCat.org
Full Text: DOI
References:
[1] Abramowitz, M.; Stegun, I. A.: Handbook of mathematical functions, (1972) · Zbl 0543.33001 · http://www.cs.bham.ac.uk/~aps/research/projects/as/
[2] Ahn, S.; Badescu, A.; Ramaswami, V.: Time dependent analysis of finite buffer fluid flows and risk models with a dividend barrier, Queueing systems 55, No. 4, 207-222 (2007) · Zbl 1124.60067 · doi:10.1007/s11134-007-9017-x
[3] Albrecher, H.; Hipp, C.: Lundberg’s risk process with tax, Blätter der DGVFM 28, No. 1, 13-28 (2007) · Zbl 1119.62103 · doi:10.1007/s11857-007-0004-4
[4] Avanzi, B.; Gerber, H. U.; Shiu, E. S. W.: Optimal dividends in the dual model, Insurance: mathematics and economics 41, 111-123 (2007) · Zbl 1131.91026 · doi:10.1016/j.insmatheco.2006.10.002
[5] Badescu, A. L.; Drekic, S.; Landriault, D.: Analysis of a threshold dividend strategy for a MAP risk model, Scandinavian actuarial journal 4, 248-260 (2007) · Zbl 1164.91025
[6] Bühlmann, H.: Mathematical methods in risk theory, (1970) · Zbl 0209.23302
[7] Cohen, J. W.: The single server queue, (1982) · Zbl 0481.60003
[8] Cramér, H.: Collective risk theory: A survey of the theory from the point of view of the theory of stochastic processes, (1955)
[9] Gerber, H. U.: An introduction to mathematical risk theory, (1979) · Zbl 0431.62066
[10] Graham, R. L.; Knuth, D. E.; Patashnik, O.: Concrete mathematics: A foundation for computer science, (1994) · Zbl 0836.00001
[11] Grandell, J.: Aspects of risk theory, (1991) · Zbl 0717.62100
[12] Prabhu, N. U.: Stochastic storage processes, (1998)
[13] Ramaswami, V.: Passage times in fluid models with application to risk processes, Methodology and computing in applied probability 8, No. 4, 497-515 (2006) · Zbl 1110.60067 · doi:10.1007/s11009-006-0426-9
[14] Rolski, T.; Schmidli, H.; Schmidt, V.; Teugels, J.: Stochastic processes for insurance and finance, (1999) · Zbl 0940.60005
[15] Takacs, L.: Combinatorial methods in the theory of stochastic processes, (1967) · Zbl 0162.21303