zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On global stability criterion of neural networks with continuously distributed delays. (English) Zbl 1141.93054
Summary: Based on the Lyapunov’s second method and the Linear Matrix Inequality (LMI) optimization approach, this paper presents a new sufficient condition for global asymptotic stability of the equilibrium point for a class of neural networks with discrete and distributed delays. The stability condition is expressed in terms of LMIs, which can be solved easily by various convex optimization algorithms. A numerical example is given to show the less conservatism and effectiveness of proposed method.

93D20Asymptotic stability of control systems
92B20General theory of neural networks (mathematical biology)
90C25Convex programming
93C15Control systems governed by ODE
34D23Global stability of ODE
LMI toolbox
Full Text: DOI
[1] Chua, L. O.; Yang, L.: Cellular neural networks: theory and applications, IEEE trans circuits systems I 35, 1257-1290 (1988) · Zbl 0663.94022 · doi:10.1109/31.7600
[2] Ramesh, M.; Narayanan, S.: Chaos control of bonhoeffer-van der Pol oscillator using neural networks, Chaos, solitons & fractals 12, 2395-2405 (2001) · Zbl 1004.37067 · doi:10.1016/S0960-0779(00)00200-9
[3] Chen, C. J.; Liao, T. L.; Hwang, C. C.: Exponential synchronization of a class of chaotic neural networks, Chaos, solitons & fractals 24, 197-206 (2005) · Zbl 1060.93519 · doi:10.1016/j.chaos.2004.09.022
[4] Cannas, B.; Cincotti, S.; Marchesi, M.; Pilo, F.: Learning of Chua’s circuit attractors by locally recurrent neural networks, Chaos, solitons & fractals 12, 2109-2115 (2001) · Zbl 0981.68135 · doi:10.1016/S0960-0779(00)00174-0
[5] Cao, J.; Ho, D. W. C.: A general framework for global asymptotic stability analysis of delayed neural networks based on LMI approach, Chaos, solitons & fractals 24, 1317-1329 (2005) · Zbl 1072.92004 · doi:10.1016/j.chaos.2004.09.063
[6] Zhou, S.; Liao, X.; Wu, Z.; Wong, K.: Hopf bifurcation in a control system for the washout filter-based delayed neural equation, Chaos, solitons & fractals 23, 101-115 (2005) · Zbl 1071.93042 · doi:10.1016/j.chaos.2004.03.025
[7] Park, J. H.; Jung, H. Y.: On the design of nonfragile guaranteed cost controller for a class of uncertain dynamic systems with state delays, Appl math comput 150, 245-257 (2004) · Zbl 1036.93054 · doi:10.1016/S0096-3003(03)00224-8
[8] Cao, J.: Global asymptotic stability of neural networks with transmission delays, Int J syst sci 31, 1313-1316 (2000) · Zbl 1080.93517 · doi:10.1080/00207720050165807
[9] Park, J. H.: Design of dynamic controller for neutral differential systems with delay in control input, Chaos, solitons & fractals 23, 503-509 (2005) · Zbl 1144.34386 · doi:10.1016/j.chaos.2004.05.022
[10] Arik, S.: Global robust stability analysis of neural networks with discrete time delays, Chaos, solitons & fractals 26, 1407-1414 (2005) · Zbl 1122.93397
[11] Park, J. H.; Kwon, O.: Controlling uncertain neutral dynamic systems with delay in control input, Chaos, solitons & fractals 26, 805-812 (2005) · Zbl 1091.34045 · doi:10.1016/j.chaos.2005.03.001
[12] Arik, S.: An analysis of global asymptotic stability of delayed cellular neural networks, IEEE trans neural netw 13, 1239-1242 (2002)
[13] Park, J. H.: A novel criterion for global asymptotic stability of BAM neural networks with time delays, Chaos, solitons, & fractals 29, 446-453 (2006) · Zbl 1121.92006 · doi:10.1016/j.chaos.2005.08.018
[14] Park, J. H.: Robust stability of bidirectional associative memory neural networks with time delays, Phys lett A 349, 494-499 (2006)
[15] Singh, V.: Robust stability of cellular neural networks with delay: linear matrix inequality approach, IEE proc control theory appl 151, 125-129 (2004)
[16] Zhao, H.: Global asymptotic stability of Hopfield neural network involving distributed delays, Neural networks 17, 47-53 (2004) · Zbl 1082.68100 · doi:10.1016/S0893-6080(03)00077-7
[17] Liang, J.; Cao, J.: Global asymptotic stability of bi-directional associative memory networks with distributed delays, Appl math comput 152, 415-424 (2004) · Zbl 1046.94020 · doi:10.1016/S0096-3003(03)00567-8
[18] Zhao, H.: Global stability of bidirectional associative memory neural networks with distributed delays, Phys lett A 297, 182-190 (2002) · Zbl 0995.92002 · doi:10.1016/S0375-9601(02)00434-6
[19] Wang, Z.; Liu, Y.; Liu, X.: On global asymptotic stability of neural networks with discrete and distributed delays, Phys lett A 345, 299-308 (2005) · Zbl 05314210
[20] Yang, H.; Chu, T.: LMI conditions for stability of neural networks with distributed delays, Chaos, solitons & fractals 34, No. 2, 557-563 (2007) · Zbl 1146.34331
[21] Boyd, B.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in systems and control theory, (1994) · Zbl 0816.93004
[22] Gahinet, P.; Nemirovski, A.; Laub, A.; Chilali, M.: LMI control toolbox user’s guide, (1995)
[23] Hale, J.; Lunel, S. M. Verduyn: Introduction to functional differential equations, (1993) · Zbl 0787.34002
[24] Moon, Y. S.; Park, P.; Kwon, W. H.; Lee, Y. S.: Int J control, Int J control 74, 1447-1455 (2001)