zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new sharpened and generalized version of Hölder’s inequality and its applications. (English) Zbl 1142.26018
Summary: We show a new sharpened and generalized version of Hölder’s inequality. As applications, the result is used to deal with an Open Problem proposed by K. L. Chung [Problem E1025, Am. Math. Mon. 59, No. 6, 407--408 (1952)], an improvement of K. L. Chung’s result is obtained.

26D15Inequalities for sums, series and integrals of real functions
Full Text: DOI
[1] Hardy, G.; Littlewood, J. E.; Pólya, G.: Inequalities. (1952) · Zbl 0047.05302
[2] Mitrinović, D. S.; Vasić, P. M.: Analytic inequalities. (1970) · Zbl 0213.22303
[3] Beckenbach, E. F.; Bellman, R.: Inequalities. (1983) · Zbl 0513.26003
[4] Mitrinović, D. S.; Pečarić, J. E.; Fink, A. M.: Classical and new inequalities in analysis. (1993) · Zbl 0771.26009
[5] Sekine, T.; Owa, S.; Tsurumi, K.: Integral means of certain analytic functions for fractional calculus. Appl. math. Comput. 187, No. 1, 425-432 (2007) · Zbl 1128.30012
[6] Yang, X. J.: Refinement of hölder inequality and application to Ostrowski inequality. Appl. math. Comput. 138, No. 2 -- 3, 455-461 (2003) · Zbl 1023.26015
[7] Yang, X. J.: On inequalities of Lyapunov type. Appl. math. Comput. 134, No. 2-3, 293-300 (2003) · Zbl 1030.34018
[8] Yang, X. J.: A note on hölder inequality. Appl. math. Comput. 134, No. 2-3, 319-322 (2003) · Zbl 1028.26019
[9] Yang, X. J.: Hölder inequality. Appl. math. Lett. 16, No. 6, 897-903 (2003) · Zbl 1046.26013
[10] Yang, X. J.: A generalization of hölder inequality. J. math. Anal. appl. 247, 328-330 (2000) · Zbl 0957.26011
[11] Arendt, W.; Demuth, M.: Hölder’s inequality for perturbations of positive semigroups by potentials. J. math. Anal. appl. 316, 652-663 (2006) · Zbl 1084.47034
[12] Mond, B.; Pečarić, J. E.: On converses of hölder and Beckenbach inequalities. J. math. Anal. appl. 196, 795-799 (1995) · Zbl 0857.26007
[13] Hu, K.: On an inequality and its applications. Sci. sinica 24, No. 8, 1047-1055 (1981) · Zbl 0471.26009
[14] Wu, S.: A further generalization of aczél’s inequality and popoviciu’s inequality. Math. inequal. Appl. 10, No. 3, 565-573 (2007) · Zbl 1124.26016
[15] He, W. S.: Generalization of a sharp hölder’s inequality and its application. J. math. Anal. appl. 332, 741-750 (2007) · Zbl 1120.26024
[16] Wu, S.; Debnath, L.: Generalizations of aczél’s inequality and popoviciu’s inequality. Indian J. Pure appl. Math. 36, No. 2, 49-62 (2005) · Zbl 1083.26019
[17] Chung, K. L.: Proposed problem E1025. Amer. math. Monthly 59, No. 6, 407-408 (1952)
[18] Hunt, G. A.: Solution to problem E1025. Amer. math. Monthly 60, No. 2, 122-123 (1953)