Zhu, Ling A general refinement of Jordan-type inequality. (English) Zbl 1142.26317 Comput. Math. Appl. 55, No. 11, 2498-2505 (2008). Summary: A general form of Jordan’s inequality is established. The applications of this result give a general improvement of the Yang Le inequality and a new infinite series \((\sin x)/x=\sum_{n=0}^{\infty} a_n (\pi^2 -4x^2)^n\) for \(0<|x|\leq\pi/2\). Cited in 1 ReviewCited in 13 Documents MSC: 26D15 Inequalities for sums, series and integrals 33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\) Keywords:lower and upper bounds; A general form of Jordan’s inequality; Yang Le inequality; the spherical Bessel functions (SBFs); the SBFs of the first kind \(j_n (x) = \sqrt{\frac{\pi}{2x}}J_{n+\frac{1}{2}}(x)\); A new infinite series for \((\sin x)/x\) PDF BibTeX XML Cite \textit{L. Zhu}, Comput. Math. Appl. 55, No. 11, 2498--2505 (2008; Zbl 1142.26317) Full Text: DOI References: [1] Mitrinovic, D. S., Analytic Inequalities (1970), Springer-Verlag · Zbl 0199.38101 [2] Debnath, L.; Zhao, C. J., New strengthened Jordan’s inequality and its applications, Applied Mathematics Letters, 16, 4, 557-560 (2003) · Zbl 1041.26005 [3] Zhu, L., Sharpening Jordan’s inequality and Yang Le inequality, Applied Mathematics Letters, 19, 240-243 (2006) · Zbl 1097.26012 [4] Zhu, L., Sharpening Jordan’s inequality and Yang Le inequality, II, Applied Mathematics Letters, 19, 990-994 (2006) · Zbl 1122.26014 [5] Anderson, G. D.; Qiu, S.-L.; Vamanamurthy, M. K.; Vuorinen, M., Generalized elliptic integral and modular equations, Pacific Journal of Mathematics, 192, 1-37 (2000) [7] Abramowitz, M.; Stegun, I., Handbook of Mathematical Functions (1964), U.S. National Bureau of Standards: U.S. National Bureau of Standards Washington, DC · Zbl 0171.38503 [8] Vamanamurthy, M. K.; Vuorinen, M., Inequalities for means, Journal of Mathematical Analysis and Application, 183, 155-166 (1994) · Zbl 0802.26009 [9] Bastardo, J. L.; Ibrahim, S. Abraham; de Cordoba, P. Fernfindez; Scholzel, J. F.Urchuegufa; Ratis, Yu. L., Evaluation of Fresnel integrals based on the continued fractions method, Applied Mathematics Letters, 18, 23-28 (2005) · Zbl 1073.33002 [10] Harris, F. E., Spherical bessel expansions of sine, cosine, and exponential integrals, Applied Numerical Mathematics, 34, 95-98 (2000) · Zbl 0951.33002 [11] Zhao, C. J., Generalization and strengthen of Yang Le inequality, Mathematics in Practice and Theory, 30, 4, 493-497 (2000), (in Chinese) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.