zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Estimates on Bloch constants for planar harmonic mappings. (English) Zbl 1142.31001
The author proves the following “Schwarz lemma” for harmonic mappings (complex harmonic functions): Assume that $f$ is a harmonic mapping on the unit disk $D$ with $f(0)=0$ and $f(D)\subset D$. Then for $z\in D$, $$ \Lambda_f(z):=\vert f_z\vert +\vert f_{\bar{z}}\vert \leq \frac{4(1+\vert f(z)\vert }{\pi(1-\vert z\vert ^2)}, $$ with equality for $f(z)=\frac{2}{\pi}\arctan\frac{2y}{1-x^2-y^2}.$ The author uses this result to improve various estimates for the injectivity radius and for Bloch-type constants for bounded harmonic mappings. Such estimates were previously obtained by {\it H. Chen, P. M. Gauthier} and {\it W. Hengartner} [Proc. Am. Math. Soc. 128, No. 11, 3231--3240 (2000; Zbl 0956.30012)], and by {\it M. Dorff} and {\it M. Nowak} [Comput. Methods Funct. Theory 4, No.1, 151--158 (2004; Zbl 1060.30033)]. See also the recent paper of {\it A. Grigoryan} [Complex Var. Elliptic Equ. 51, No. 1, 81--87 (2006; Zbl 1114.30024)].

31A05Harmonic, subharmonic, superharmonic functions (two-dimensional)
30C80Maximum principle; Schwarz’s lemma, Lindelöf principle, etc. (one complex variable)
Full Text: DOI
[1] Laudau, E.: Der Picard -- schottysche satz und die blochsche konstanten, (1926)
[2] Hayman, W. K.: Multivalent functions, Cambridge tracts in math. 110 (1994) · Zbl 0904.30001
[3] Chen, Huaihui; Gauthier, P. M.; Hengartner, W.: Bloch constants for planar harmonic mappings, Proc. amer. Math. soc. 128, 3231-3240 (2000) · Zbl 0956.30012 · doi:10.1090/S0002-9939-00-05590-8
[4] Dorff, M.; Nowak, M.: Laudau’s theorem for planar harmonic mappings, Comput. methods funct. Theory 4, 151-158 (2004) · Zbl 1060.30033
[5] Lewy, H.: On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. amer. Math. soc. 42, 689-692 (1936) · Zbl 0015.15903 · doi:10.1090/S0002-9904-1936-06397-4