zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A remark on Andrews-Askey integral. (English) Zbl 1142.33006
Summary: We use the Andrews-Askey integral and the $q$-Chu-Vandermonde formula to derive a more general integral formula. Applications of the new integral formula are also given, which include to derive the $q$-Pfaff-Saalschütz formula and the terminating Sears’s $_3\phi _2$ transformation formula.

33D15Basic hypergeometric functions of one variable, ${}_r\phi_s$
Full Text: DOI
[1] Andrews, G. E.; Askey, R.: Another q-extension of the beta function, Proc. amer. Math. soc. 81, 97-100 (1981) · Zbl 0471.33001 · doi:10.2307/2043995
[2] Andrews, G. E.: Q-series: their development and applications in analysis, number theory, combinatorics, physics and computer algebra, CBMS regional conference lecture series 66 (1986) · Zbl 0594.33001
[3] Carlitz, L.: A q-identity, Fibonacci quart. 12, 369-372 (1974) · Zbl 0296.33001
[4] Gasper, G.; Rahman, M.: Basic hypergeometric series, (1990) · Zbl 0695.33001
[5] Jackson, F. H.: On q-definite integrals, Q. J. Pure appl. Math. 50, 101-112 (1910) · Zbl 41.0317.04
[6] Liu, Z. -G.: Some operator identities and q-series transformation formulas, Discrete math. 265, 119-139 (2003) · Zbl 1021.05010 · doi:10.1016/S0012-365X(02)00626-X
[7] Sears, D. B.: Transformation of basic hypergeometric functions of special type, Proc. London math. Soc. 52, 467-483 (1951) · Zbl 0042.07503 · doi:10.1112/plms/s2-52.6.467