zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Analysis of a predator-prey model with modified Holling-Tanner functional response and time delay. (English) Zbl 1142.34053
Summary: A predator-prey model with modified Holling-Tanner functional response and time delay is discussed. It is proved that the system is permanent under some appropriate conditions. The local stability of the equilibria is investigated. By constructing a suitable Lyapunov functional, sufficient conditions are derived for the global stability of the positive equilibrium of the model.

34K60Qualitative investigation and simulation of models
34K20Stability theory of functional-differential equations
92D25Population dynamics (general)
34K25Asymptotic theory of functional-differential equations
Full Text: DOI
[1] L. Cai, X. Song, Permanence and stability of a predator -- prey system with stage structure for predator, J. Comput. Appl. Math., in press. · Zbl 1117.34070 · doi:10.1016/j.cam.2005.12.035
[2] Fan, M.; Kuang, Y.: Dynamics of nonautonomous predator -- prey system with the beddington -- deangelis functional response, J. math. Anal. appl. 295, 15-39 (2004) · Zbl 1051.34033 · doi:10.1016/j.jmaa.2004.02.038
[3] Hsu, S. B.; Huang, T. W.: Global stability for a class of predator -- prey systems, SIAM J. Appl. math. 55, 763-783 (1995) · Zbl 0832.34035 · doi:10.1137/S0036139993253201
[4] Kuang, Y.: Delay differential equations with applications in population dynamics, (1993) · Zbl 0777.34002
[5] Nindjin, A. F.; Aziz-Alaoui, M. A.; Cadivel, M.: Analysis of a predator -- prey model with modified Leslie -- gower and Holling-type II schemes with time delay, Nonlinear anal. 7, 1104-1118 (2006) · Zbl 1104.92065 · doi:10.1016/j.nonrwa.2005.10.003
[6] Wang, W.; Ma, Z.: Harmless delays for uniform persistence, J. math. Anal. appl. 158, 256-268 (1991) · Zbl 0731.34085 · doi:10.1016/0022-247X(91)90281-4
[7] Xu, R.; Chaplain, M. A.: Persistence and global stability in a delayed predator -- prey system with michaelis -- menten type functional response, Appl. math. Comput. 130, 441-455 (2002) · Zbl 1030.34069 · doi:10.1016/S0096-3003(01)00111-4