zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The dynamics of an age structured predator-prey model with disturbing pulse and time delays. (English) Zbl 1142.34054
Summary: We formulate a general and robust prey-dependent consumption predator-prey model with periodic harvesting (catching or poisoning) for the prey and stage structure for the predator with constant maturation time delay (through-stage time delay) and perform a systematic mathematical and ecological study. We show that the conditions for global attractivity of the `predator-extinction’ (`predator-eradication’) periodic solution and permanence of the population of the model depend on time delay, so, we call it “profitless”. We also show that constant maturation time delay and impulsive catching or poisoning for the prey can bring great effects on the dynamics of system by numerical analysis. In this paper, the main feature is that we introduce time delay and pulse into the predator-prey (natural enemy-pest) model with age structure, exhibit a new modeling method which is applied to investigate impulsive delay differential equations, and give some reasonable suggestions for pest management.

34K60Qualitative investigation and simulation of models
37K45Stability problems (infinite-dimensional systems)
92D25Population dynamics (general)
34K25Asymptotic theory of functional-differential equations
34K20Stability theory of functional-differential equations
Full Text: DOI
[1] Aiello, W. G.; Freedman, H. I.: A time-delay model of single-species growth with stage structure, Math. biosci. 101, 139-153 (1990) · Zbl 0719.92017 · doi:10.1016/0025-5564(90)90019-U
[2] Bainov, D.; Simeonov, P.: System with impulsive effect: stability, theory and applications, (1989) · Zbl 0683.34032
[3] D’onofrio, A.: Pulse vaccination strategy in the SIR epidemic model: global asymptotic stable eradication in presence of vaccine failures, Math. comput. Model. 36, 473-489 (2002) · Zbl 1025.92011 · doi:10.1016/S0895-7177(02)00177-2
[4] Gourley, S. A.; Kuang, Y.: A stage structured predator -- prey model and its dependence on through-stage delay and death rate, J. math. Biol. 49, 188-200 (2004) · Zbl 1055.92043 · doi:10.1007/s00285-004-0278-2
[5] Hastings, A.: Age-dependent predation is not a simple process, I, continuous time models, Theor. popul. Biol. 23, 47-62 (1983) · Zbl 0507.92016 · doi:10.1016/0040-5809(83)90023-0
[6] Hastings, A.: Delay in recruitment at different trophic levels, effects on stability, J. math. Biol. 21, 35-44 (1984) · Zbl 0547.92014 · doi:10.1007/BF00275221
[7] Hui, J.; Zhu, D.: Dynamic complexities for prey-dependent consumption integrated pest management models with impulsive effects, Chaos, solitons and fractals 29, 233-251 (2006) · Zbl 1095.92067 · doi:10.1016/j.chaos.2005.08.025
[8] Kuang, Y.: Delay differential equations with applications in population dynamics, (1993) · Zbl 0777.34002
[9] Lakshmikantham, V.; Bainov, D.; Simeonov, P.: Theory of impulsive differential equations, (1989) · Zbl 0718.34011
[10] Leonid, B.; Elena, B.: Linearized oscillation theory for a nonlinear delay impulsive equation, J. comput. Appl. math. 161, 477-495 (2003) · Zbl 1045.34039 · doi:10.1016/j.cam.2003.06.004
[11] Liu, B.; Chen, L.: The periodic competing Lotka -- Volterra model with impulsive effect, IMA J. Math. med. Biol. 21, 129-145 (2004) · Zbl 1055.92056 · doi:10.1093/imammb/21.2.129
[12] Liu, B.; Zhang, Y.; Chen, L.: The dynamical behaviors of a Lotka -- Volterra predator -- prey model concerning integrated pest management, Nonlinear anal. Real world appl. 6, 227-243 (2005) · Zbl 1082.34039 · doi:10.1016/j.nonrwa.2004.08.001
[13] Liu, S.; Chen, L.: Extinction and permanence in competitive stage-structured system with time-delay, Nonlinear anal. 51, 1347-1361 (2002) · Zbl 1021.34065 · doi:10.1016/S0362-546X(01)00901-4
[14] Liu, S.; Chen, L.; Luo, G.; Jiang, Y.: Asymptotic behaviors of competitive Lotka -- Volterra system with stage structure, J. math. Anal. appl. 271, 124-138 (2002) · Zbl 1022.34039 · doi:10.1016/S0022-247X(02)00103-8
[15] Liu, X.; Ballinger, G.: Boundedness for impulsive delay differential equations and applications to population growth models, Nonlinear anal. 53, 1041-1062 (2003) · Zbl 1037.34061 · doi:10.1016/S0362-546X(03)00041-5
[16] Ou, L.: The asymptotic behaviors of a stage-structured autonomous predator -- prey system with time delay, J. math. Appl. 283, 534-548 (2003) · Zbl 1035.34046 · doi:10.1016/S0022-247X(03)00283-X
[17] Roberts, M. G.; Kao, R. R.: The dynamics of an infectious disease in a population with birth pulse, Math. biosci. 149, 23-36 (1998) · Zbl 0928.92027 · doi:10.1016/S0025-5564(97)10016-5
[18] Song, X.; Cui, J.: The stage-structured predator -- prey system with delay and harvesting, Appl. anal. 81, 1127-1142 (2002) · Zbl 1049.34096 · doi:10.1080/0003681021000029918
[19] Tang, S.; Chen, L.: Density-dependent birth rate, birth pulses and their population dynamic consequences, J. math. Biol. 44, 185-199 (2002) · Zbl 0990.92033 · doi:10.1007/s002850100121
[20] Tang, S.; Chen, L.: The effect of seasonal harvesting on stage-structured population models, J. math. Biol. 48, 357-374 (2004) · Zbl 1058.92051 · doi:10.1007/s00285-003-0243-5
[21] Wang, W.; Chen, L.: A predator -- prey system with stage-structure for predator, Comput. math. Appl. 33, 83-91 (1997)
[22] Xiao, Y.; Chen, L.; Den Bosch, F. Ven: Dynamical behavior for a stage-structured SIR infectious disease model, Nonlinear anal. Real world appl. 3, 175-190 (2002) · Zbl 1007.92032 · doi:10.1016/S1468-1218(01)00021-9
[23] Yan, J.: Stability for impulsive delay differential equations, Nonlinear anal. 63, 66-80 (2005) · Zbl 1082.34069 · doi:10.1016/j.na.2005.05.001
[24] Zhang, S.; Tan, D.; Chen, L.: Chaos in periodically forced Holling type II predator -- prey system with impulsive perturbations, Chaos, solitons and fractals 28, 367-376 (2006) · Zbl 1083.37537 · doi:10.1016/j.chaos.2005.05.037