×

Anti-periodic solutions for fully nonlinear first-order differential equations. (English) Zbl 1142.34313

The authors study three types of the anti-periodic boundary value problems for nonlinear first-order differential equations. By using the Leray-Schauder degree theory and Schauder’s fixed point theorem, several new existence results are obtained.
Reviewer: Minghe Pei (Jilin)

MSC:

34B15 Nonlinear boundary value problems for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Okochi, H., On the existence of periodic solutions to nonlinear abstract parabolic equations, J. Math. Soc. Japan, 40, 3, 541-553 (1988) · Zbl 0679.35046
[2] Aftabizadeh, A. R.; Aizicovici, S.; Pavel, N. H., On a class of second-order anti-periodic boundary value problems, J. Math. Anal. Appl., 171, 301-320 (1992) · Zbl 0767.34047
[3] Aftabizadeh, A. R.; Aizicovici, S.; Pavel, N. H., Anti-periodic boundary value problems for higher order differential equations in Hilbert spaces, Nonlinear Anal., 18, 253-267 (1992) · Zbl 0779.34054
[4] Aizicovici, S.; McKibben, M.; Reich, S., Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities, Nonlinear Anal., 43, 233-251 (2001) · Zbl 0977.34061
[5] Aizicovici, S.; Pavel, N. H., Anti-periodic solutions to a class of nonlinear differential equations in Hilbert space, J. Funct. Anal., 99, 387-408 (1991) · Zbl 0743.34067
[6] Chen, Y. Q., Note on Massera’s theorem on anti-periodic solution, Adv. Math. Sci. Appl., 9, 125-128 (1999) · Zbl 0924.34037
[7] Chen, Y. Q.; Wang, X. D.; Xu, H. X., Anti-periodic solutions for semilinear evolution equations, J. Math. Anal. Appl., 273, 627-636 (2002) · Zbl 1055.34113
[8] Chen, Y. Q.; Cho, Y. J.; Jung, J. S., Anti-periodic solutions for evolution equations, Math. Comput. Modelling, 40, 1123-1130 (2004) · Zbl 1074.34058
[9] Chen, Y. Q.; Cho, Y. J.; O’Regan, D., Anti-periodic solutions for evolution equations, Math. Nachr., 278, 356-362 (2005) · Zbl 1068.34059
[10] Franco, D.; Nieto, J. J., First order impulsive ordinary differential equations with anti-periodic and nonlinear boundary conditions, Nonlinear Anal., 42, 163-173 (2000) · Zbl 0966.34025
[11] Franco, D.; Nieto, J. J.; O’Regan, D., Anti-periodic boundary value problem for nonlinear first order ordinary differential equations, Math. Inequal. Appl., 6, 477-485 (2003) · Zbl 1097.34015
[12] Franco, D.; Nieto, J. J.; O’Regan, D., Existence of solutions for first order ordinary differential equations with nonlinear boundary conditions, Appl. Math. Comput., 153, 793-802 (2004) · Zbl 1058.34015
[13] Haraux, A., Anti-periodic solutions of some nonlinear evolution equations, Manuscripta Math., 63, 479-505 (1989) · Zbl 0684.35010
[14] Luo, Z. G.; Shen, J. H.; Nieto, J. J., Antiperiodic boundary value problem for first-order impulsive ordinary differential equations, Comput. Math. Appl., 49, 253-261 (2005) · Zbl 1084.34018
[15] Nakao, M., Existence of anti-periodic solution for the quasilinear wave equation with viscosity, J. Math. Anal. Appl., 204, 754-764 (1996) · Zbl 0873.35051
[16] Okochi, H., On the existence of anti-periodic solutions to a nonlinear evolution equation associated with odd subdifferential operators, J. Funct. Anal., 91, 246-258 (1990) · Zbl 0735.35071
[17] Okochi, H., On the existence of anti-periodic solutions to nonlinear parabolic equations in noncylindrical domains, Nonlinear Anal., 14, 771-783 (1990) · Zbl 0715.35091
[18] Souplet, P., Uniqueness and nonuniqueness results for the antiperiodic solutions of some second-order nonlinear evolution equations, Nonlinear Anal., 26, 1511-1525 (1996) · Zbl 0855.34075
[19] Souplet, P., Optimal uniqueness condition for the antiperiodic solutions of some nonlinear parabolic equations, Nonlinear Anal., 32, 279-286 (1998) · Zbl 0892.35078
[20] Yin, Y., Monotone iterative technique and quasilinearization for some anti-periodic problem, Nonlinear World, 3, 253-266 (1996) · Zbl 1013.34015
[21] Delvos, F. J.; Knoche, L., Lacunary interpolation by antiperiodic trigonometric polynomials, BIT, 39, 439-450 (1999) · Zbl 0931.42003
[22] Du, J. Y.; Han, H. L.; Jin, G. X., On trigonometric and paratrigonometric Hermite interpolation, J. Approx. Theory, 131, 74-99 (2004) · Zbl 1064.42002
[23] Chen, H. L., Antiperiodic wavelets, J. Comput. Math., 14, 32-39 (1996) · Zbl 0839.42014
[24] Djiakov, P.; Mityagin, B., Spectral gaps of the periodic Schrödinger operator when its potential is an entire function, Adv. in Appl. Math., 31, 562-596 (2003) · Zbl 1047.34100
[25] Djiakov, P.; Mityagin, B., Simple and double eigenvalues of the Hill operator with a two-term potential, J. Approx. Theory, 135, 70-104 (2005) · Zbl 1080.34066
[26] Cabada, A.; Vivero, D. R., Existence and uniqueness of solutions of higher-order antiperiodic dynamic equations, Adv. Difference Equ., 4, 291-310 (2004) · Zbl 1083.39017
[27] Wang, Y.; Shi, Y. M., Eigenvalues of second-order difference equations with periodic and antiperiodic boundary conditions, J. Math. Anal. Appl., 309, 56-69 (2005) · Zbl 1083.39019
[28] Abdurahman, A.; Anton, F.; Bordes, J., Half-string oscillator approach to string field theory (Ghost sector: I), Nuclear Phys. B, 397, 260-282 (1993)
[29] Ahn, C.; Rim, C., Boundary flows in general coset theories, J. Phys. A, 32, 2509-2525 (1999) · Zbl 0960.81062
[30] Kleinert, H.; Chervyakov, A., Functional determinants from Wronski Green function, J. Math. Phys., 40, 6044-6051 (1999) · Zbl 0963.34075
[31] Pinsky, S.; Tritman, U., Antiperiodic boundary conditions to supersymmetric discrete light cone quantization, Phys. Rev. D, 62, 087701 (2000), 4 pp
[32] Li, D. S.; Zang, Z. L., Periodic viscosity solutions of fully nonlinear first-order ordinary differential equations, J. Math. Res. Exposition, 15, 13-16 (1995)
[33] Crandall, M. G.; Lions, P. L., Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277, 1-19 (1983) · Zbl 0599.35024
[34] Crandall, M. G.; Ishii, H.; Lions, P. L., User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27, 1-67 (1992) · Zbl 0755.35015
[35] Caffarelli, L. A.; Cabré, X., Fully nonlinear elliptic equations, (American Mathematical Society Colloquium Publications, vol. 43 (1995), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI) · Zbl 0834.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.