Positive solutions of Neumann problems with singularities. (English) Zbl 1142.34315

The authors establish the existence of positive solutions to the boundary value problem
\[ x''+m^2x=f(t,x)+{\mathit{e}}(t),\;x'(0)=x'(1)=0, \]
where \(m\in(0,{\pi\over2})\), \(e\in C[0,1]\) and \(f(t,x)\) may be singular at \(x=0\). Moreover, they suppose that there exist a constant \(r>0\), a nonincreasing function \(g(x)\in C((0,r],(0,\infty))\), functions \(h\in C((0,r],[0,\infty))\) and \(k\in C([0,1],[0,\infty))\) and a continuous function \(\phi_r(t)> 0\) such that \(h(x)/g(x)\) is nondecreasing for \(x\in(0,r]\), \(\phi_r(t)+{\mathit{e}}(t)> 0\) for all \(t\in[0,1]\) and \[ \phi_r(t)\leq f(t,x)\leq k(t)\{f(x)+h(x)\}\text{ for all }(t,x)\in[0,1]\times(0,r]. \] The proof relies on a nonlinear alternative principle of Leray-Schauder and a truncation technique.


34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations
34B16 Singular nonlinear boundary value problems for ordinary differential equations
Full Text: DOI


[1] Cabada, A.; Sanchez, L., A positive operator approach to the Neumann problem for a second order ordinary differential equation, J. math. anal. appl., 204, 774-785, (1996) · Zbl 0871.34014
[2] Cabada, A.; Pouse, R.R.L., Existence result for the problem \((\varphi(u^\prime))^\prime = f(t, u, u^\prime)\) with periodic and Neumann boundary conditions, Nonlinear anal., 30, 1733-1742, (1997) · Zbl 0896.34016
[3] Cabada, A.; Habets, P.; Lois, S., Monotone method for the Neumann problem with lower and upper solutions in the reverse order, Appl. math. comput., 117, 1-14, (2001) · Zbl 1031.34021
[4] Canada, A.; Montero, J.A.; Villegas, S., Liapunov-type inequalities and Neumann boundary value problems at resonance, Math. inequal. appl., 3, 459-475, (2005) · Zbl 1085.34014
[5] De Coster, C.; Habets, P., Upper and lower solutions in the theory of ODE boundary value problems: classical and recent results, (), 1-78 · Zbl 0889.34018
[6] Jiang, D.; Liu, H., Existence of positive solutions to second order Neumann boundary value problem, J. math. res. exposition, 20, 360-364, (2000) · Zbl 0963.34019
[7] Jiang, D.; Chu, J.; O’Regan, D.; Agarwal, R.P., Multiple positive solutions to superlinear periodic boundary value problems with repulsive singular forces, J. math. anal. appl., 286, 563-576, (2003) · Zbl 1042.34047
[8] Krasnosel’skii, M.A., Positive solutions of operator equations, (1964), Noordhoff Groningen · Zbl 0121.10604
[9] Sun, J.; Li, W., Multiple positive solutions to second order Neumann boundary value problems, Appl. math. comput., 146, 187-194, (2003) · Zbl 1041.34013
[10] Yazidi, N., Monotone method for singular Neumann problem, Nonlinear anal., 49, 589-602, (2002) · Zbl 1007.34019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.