zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global stability of a delayed SIRS model with temporary immunity. (English) Zbl 1142.34354
Summary: This paper addresses a time-delayed SIRS model with a linear incidence rate. Immunity gained by experiencing the disease is temporary; whenever infected, the disease individuals will return to the susceptible class after a fixed period of time. First, the local and global stabilities of the infection-free equilibrium are analyzed, respectively. Second, the endemic equilibrium is formulated in terms of the incidence rate, and two sufficient conditions for its locally asymptotic stability are found, one being proved theoretically, while the other being shown by introducing an auxiliary optimization problem and solving this problem with the help of Matlab toolbox. Finally, by using a Lyapunov functional, a sufficient criterion for the global stability of the endemic equilibrium is established.

MSC:
34D23Global stability of ODE
92D30Epidemiology
Software:
Matlab
WorldCat.org
Full Text: DOI
References:
[1] Aron, J. L.: Acquired immunity dependent upon exposure in an SIRS epidemic model, Math biosci 88, 37-47 (1988) · Zbl 0637.92007 · doi:10.1016/0025-5564(88)90047-8
[2] Brauer, F.; Den Driessche, P. Van: Models for transmission of disease with immigration of infectives, Math biosci 171, 143-171 (2001) · Zbl 0995.92041 · doi:10.1016/S0025-5564(01)00057-8
[3] Beretta, E.; Kuang, Y.: Modeling and analysis of a marine bacteriophage infection with latency period, Nonlinear anal real world appl 2, 35-74 (2001) · Zbl 1015.92049 · doi:10.1016/S0362-546X(99)00285-0
[4] Beretta, E.; Takeuchi, Y.: Convergence results in SIR epidemic models with varying population sizes, Nonlinear anal theory method appl 28, 1909-1921 (1997) · Zbl 0879.34054 · doi:10.1016/S0362-546X(96)00035-1
[5] Busenberg, S.; Cooke, K. L.: Periodic solutions of s periodic nonlinear delay differential equation, SIAM J appl math 35, 704-721 (1978) · Zbl 0391.34022 · doi:10.1137/0135059
[6] Li, G.; Zhen, J.: Global stability of an SEI epidemic model with general contact rate, Chaos, solitons & fractals 23, 997-1004 (2005) · Zbl 1062.92062
[7] Thieme, H. R.; Den Driessche, P. Van: Global stability in cyclic epidemic models with disease fatalities, Fields inst commun 21, 459-472 (1999) · Zbl 0924.92018
[8] Zeng, G.; Chen, L.; Sun, L.: Complexity of an SIR epidemic dynamics model with impulsive vaccination control, Chaos, solitons & fractals 26, 495-505 (2005) · Zbl 1065.92050
[9] Cooke, K. L.; Den Driessche, P. Van: Analysis of an SEIRS epidemic model with two delays, J math biol 35, 240-260 (1993) · Zbl 0865.92019
[10] Wang, K.; Wang, W.; Liu, X.: Viral infection model with periodic lytic immune response, Chaos, solitons & fractals 28, 90-99 (2006) · Zbl 1079.92048 · doi:10.1016/j.chaos.2005.05.003
[11] Wang, W.: Global behavior of an SEIRS epidemic model with time delays, Appl math lett 15, 423-428 (2002) · Zbl 1015.92033 · doi:10.1016/S0893-9659(01)00153-7
[12] Greenhalgh, D.; Khan, Q. J. A.; Lewis, F. I.: Recurrent epidemic cycles in an infectious disease model with a time delay in loss of vaccine immunity, Nonlinear anal 63, 779-788 (2005) · Zbl 1222.92055 · doi:10.1016/j.na.2004.12.018
[13] Li, G.; Zhen, J.: Global stability of a SEIR epidemic model with infectious force in latent. Infected and immune period, Chaos, solitons & fractals 25, 1177-1184 (2005) · Zbl 1065.92046 · doi:10.1016/j.chaos.2004.11.062
[14] Kyrychko, Y. N.; Nlyuss, K. B.: Global properties of a delayed SIR model with temporary immunity and nonlinear incidence rate, Nonlinear anal real world appl 6, 495-507 (2005) · Zbl 1144.34374 · doi:10.1016/j.nonrwa.2004.10.001
[15] Kuang, Y.: Delay differential equations with applications in population dynamics, (1993) · Zbl 0777.34002
[16] Hale, J. K.; Waltman, P.: Persistence in infinite-dimensional systems, SIAM J math anal 20, 335-356 (1976)
[17] Hale, J. K.: Theory of functional differential equations, (1977) · Zbl 0352.34001