×

Linear approximation for equations of motion of vibrating membrane with one parameter. (English) Zbl 1142.35049

Summary: This article treats a one parameter family of equations of motion of vibrating membrane whose energy functionals converge to the Dirichlet integral as the parameter \(\varepsilon\) tends to zero. It is proved that both weak solutions satisfying energy inequality and generalized minimizing movements converge to a unique solution to the d’Alembert equation.

MSC:

35L70 Second-order nonlinear hyperbolic equations
49J40 Variational inequalities
49Q15 Geometric measure and integration theory, integral and normal currents in optimization
74K15 Membranes
Full Text: DOI

References:

[1] \auF. Almgren, J. E. Taylor and L. Wang, Curvature driven flows: a variational approach, \tiSIAM J. Control. and Optim., , 31 ( (1993),)\spg387-\epg438. · Zbl 0783.35002 · doi:10.1137/0331020
[2] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Science Publication, 2000. · Zbl 0957.49001
[3] F. Bethuel, J. M. Coron, J. M. Ghidallia and A. Soyeur, Heat flow and relaxed energies for harmonic maps, Nonlinear Diffusion Equations and Their Equilibrium States, 3.
[4] L. C. Evans, Weak convergence methods for nonlinear partial differential equations, CBMS, 74 , Amer. Math. Soc., 1990. · Zbl 0698.35004
[5] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, CRC Press, 1992. · Zbl 0804.28001
[6] H. Federer, Geometric measure theory, Springer-Verlag, New York, 1969. · Zbl 0176.00801
[7] \auD. Fujiwara and S. Takakuwa, A varifold solution to the nonlinear equation of motion of a vibrating membrane, Kodai Math. J., 9 (1986), 84-116, correction, \tiibid., , 14 ( (1991),)\spg310-\epg311. · Zbl 0631.49019 · doi:10.2996/kmj/1138037153
[8] M. Giaquinta, G. Modica and J. Soucek, Cartesian currents in the calculus of variations I, II, Springer, 1998. · Zbl 0409.49007
[9] E. De Giorgi, New problems on minimizing movements, Boundary Value Problems for PDE and Applications, Masson, 1993, pp. 81-98. · Zbl 0851.35052
[10] E. Giusti, Minimal surfaces and functions of bounded variation, Birkhäuser, Boston-Basel-Stuttgart, 1984. · Zbl 0545.49018
[11] \auK. Kikuchi, An analysis of the nonlinear equation of motion of a vibrating membrane in the space of \(\mathit{BV}\) functions, \tiJ. Math. Soc. Japan, , 52 ( (2000),)\spg741-\epg766. · Zbl 0964.35101 · doi:10.2969/jmsj/05240741
[12] \auK. Kikuchi, A remark on Dirichlet boundary condition for the nonlinear equation of motion of a vibrating membrane, \tiNonlinear Analysis, , 47 ( (2001),)\spg1039-\epg1050. · Zbl 1042.35594 · doi:10.1016/S0362-546X(01)00244-9
[13] N. Kikuchi, An approach to the construction of Morse flows for variational functionals, Nematics Mathematical and Physical Aspects (eds. J. M. Ghidaglia, J. M. Coron and F. Hélein), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 332 , Kluwer Acad. Publ., Dordrecht-Boston-London, 1991, pp. 195-199. · Zbl 0850.76043 · doi:10.1007/978-94-011-3428-6_15
[14] \auD. Kinderlehrer and P. Pedregal, Gradient young measures generated by sequences in sobolev spaces, \tiJ. Geom. Anal., , 4 ( (1994),)\spg59-\epg90. · Zbl 0808.46046 · doi:10.1007/BF02921593
[15] T. Nagasawa, Discrete Morse semiflows and evolution equations, Proceedings of the 16th Young Japanese Mathematicians’ Seminar on Evolution Equations, 1994, pp. 1-20.
[16] T. Nagasawa, Construction of weak solutions of the navier-stokes equations on riemannian manifold by minimizing variational functionals, Adv. Math. Sci. Appl., (1998). · Zbl 0944.58021
[17] \auK. Rektorys, On application of direct variational method to the solution of parabolic boundary value problems of arbitrary order in the space variables, \tiCzechoslovak Math. J., , 21 ( (1971),)\spg318-\epg339. · Zbl 0217.41601
[18] \auE. Rothe, Zweidimensionale parabolische randwertaufgaben als grenzfall eindimensionaler randwertaufgaben, \tiMath. Ann., , 102 ( (1930),)\spg650-\epg670. · JFM 56.1076.02 · doi:10.1007/BF01782368
[19] \auA. Tachikawa, A variational approach to constructing weak solutions of semilinear hyperbolic systems, \tiAdv. Math. Sci. Appl., , 3 ( (1994),)\spg93-\epg103. · Zbl 0826.35015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.