Dai, Zhengde; Li, Shaolin; Dai, Qingyun; Huang, Jian Singular periodic soliton solutions and resonance for the Kadomtsev-Petviashvili equation. (English) Zbl 1142.35563 Chaos Solitons Fractals 34, No. 4, 1148-1153 (2007). Summary: Exact periodic soliton solutions of the Kadomtsev-Petviashvili (KP) equation are obtained using the two-soliton and generalized Hirota methods. Singular and non-singular phenomenons of various periodic soliton solutions are studied. The resonance interaction between \(y\)-periodic solitons and line solitons is investigated. Cited in 26 Documents MSC: 35Q53 KdV equations (Korteweg-de Vries equations) 35B10 Periodic solutions to PDEs 35Q51 Soliton equations PDF BibTeX XML Cite \textit{Z. Dai} et al., Chaos Solitons Fractals 34, No. 4, 1148--1153 (2007; Zbl 1142.35563) Full Text: DOI OpenURL References: [1] Ablowitz, M.J.; Herbst, B.M.; Schober, C.M., J comput phys, 126-299, (1996) [2] Konopechenko, B., Solitons in multidimension, inverse spectral transform method, (1993), World Scientific [3] Case, K.M.; Monge, A., J math phys, 30, 6, 1250-1253, (1990) [4] Gu, X., Chin sci bull, 37, 16, 1330-1333, (1992), [in Chinese] [5] Cheng, Y.; Li, Y.S.; Bullough, R.K., J phys A: math gen, 21, 8, L443-L447, (1988) [6] Cheng, Y.; Li, Y.S., Phys lett A, 157, 22, (1991) [7] Isaza, P.; Mejia, J.; Stallbohm, V., J math anal appl, 196, 2, 566-587, (1995) [8] Anders, I., CR acad sci ser I math, 333, 9, 891-896, (2001) [9] Zou, W., Appl math lett, 15, 1, 35-39, (2002) [10] Yomba, E., Chaos, solitons & fractals, 22, 2, 321-325, (2004) [11] Liu, Y., J differen equat, 180, 1, 153-170, (2002) [12] Tajiri M, Arai T. In: Proceeding of Institute of Math of NAS of Ukraine, vol. 30, 2000. p. 210-7. [13] Tajiri, M.; Arai, T.; Watanbe, Y., J phys soc jpn, 67, 4051, (1998) [14] Dai, Z.; Huang, J.; Jiang, M.; Wang, S., Chaos, solitons & fractals, 26, 1189-1194, (2005) · Zbl 1070.35029 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.