Román-Flores, H.; Chalco-Cano, Y. Some chaotic properties of Zadeh’s extensions. (English) Zbl 1142.37308 Chaos Solitons Fractals 35, No. 3, 452-459 (2008). Summary: The aim of this paper is to study some chaotic aspects for the discrete fuzzy system \(u_{n+1} = \hat f (u_n)\), where \(\hat f \) is the Zadeh’s extension of a continuous function \(f:X \rightarrow X\). Cited in 2 ReviewsCited in 25 Documents MSC: 37B99 Topological dynamics 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior 39A10 Additive difference equations 39B12 Iteration theory, iterative and composite equations Keywords:transitivity; periodic density; sensitive dependence of the initial conditions; Devaney’s chaos; discrete fuzzy system PDF BibTeX XML Cite \textit{H. Román-Flores} and \textit{Y. Chalco-Cano}, Chaos Solitons Fractals 35, No. 3, 452--459 (2008; Zbl 1142.37308) Full Text: DOI References: [1] Banks, J.; Brooks, J.; Cairns, G.; Davis, G.; Stacey, P., On the Devaney’s definition of chaos, Amer Math Monthly, 99, 332-334 (1992) · Zbl 0758.58019 [2] Banks, J., Chaos for induced hyperspace maps, Chaos, Solitons & Fractals, 25, 681-685 (2005) · Zbl 1071.37012 [3] Barros, L.; Bassanezi, R.; Tonelli, P., Fuzzy modelling in population dynamics, Ecol Model, 128, 27-33 (2000) [4] Cánovas, J.; Soler, G., Topological entropy for induced hyperspace maps, Chaos, Solitons & Fractals, 28, 979-982 (2006) · Zbl 1097.54036 [5] Devaney, R., An introduction to chaotic dynamical systems (2003), Westview Press: Westview Press Boulder · Zbl 1025.37001 [6] Diamond, P., Chaos in iterated fuzzy systems, J Math Anal Appl, 184, 472-484 (1994) · Zbl 0830.54006 [7] Diamond, P.; Kloeden, P., Metric spaces of fuzzy sets: theory and applications (1994), World Scientific: World Scientific Singapore · Zbl 0873.54019 [8] Diamond, P.; Pokrovskii, A., Chaos, entropy and a generalized extension principle, Fuzzy Sets Syst, 61, 277-283 (1994) · Zbl 0827.58037 [9] Klein, E.; Thompson, A., Theory of correspondences (1984), Wiley-Interscience: Wiley-Interscience New York [10] Kloeden, P., Chaotic iterations of fuzzy sets, Fuzzy Sets Syst, 42, 37-42 (1991) · Zbl 0746.54010 [11] Peris, A., Set-valued discrete chaos, Chaos, Solitons & Fractals, 26, 19-23 (2005) · Zbl 1079.37024 [12] Puri, M.; Ralescu, D., Fuzzy random variables, J Math Anal Appl, 114, 402-422 (1986) · Zbl 0592.60004 [13] Román-Flores, H., The compactness of \(E(X)\), Appl Math Lett, 11, 13-17 (1998) · Zbl 1337.54003 [14] Román-Flores, H.; Barros, L.; Bassanezi, R., A note on the Zadeh’s extensions, Fuzzy Sets Syst, 117, 327-331 (2001) · Zbl 0968.54007 [15] Román-Flores, H.; Rojas-Medar, M., Embedding of level-continuous fuzzy sets on Banach spaces, Inform Sci, 144, 227-247 (2002) · Zbl 1034.46079 [16] Román-Flores, H., A note on transitivity in set-valued discrete systems, Chaos, Solitons & Fractals, 17, 99-104 (2003) · Zbl 1098.37008 [17] Román-Flores, H.; Chalco-Cano, Y., Robinson’s chaos in set-valued discrete systems, Chaos, Solitons & Fractals, 257, 33-42 (2005) · Zbl 1071.37013 [18] Vellekoop, M.; Berglund, R., On intervals, transitivity=chaos, Amer Math Monthly, 101, 4, 353-355 (1994) · Zbl 0886.58033 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.