×

\(n\)-dimensional stable and unstable manifolds of hyperbolic singular point. (English) Zbl 1142.37321

Summary: Invariant manifold play an important role in the qualitative analysis of dynamical systems, such as in studying homoclinic orbit and heteroclinic orbit. This paper focuses on stable and unstable manifolds of hyperbolic singular points. For a type of \(n\)-dimensional quadratic system, such as Lorenz system, Chen system, Rössler system if \(n = 3\), we provide the series expression of manifolds near the hyperbolic singular point, and proved its convergence using the proof of the formal power series. The expressions can be used to investigate the heteroclinic orbits and homoclinic orbits of hyperbolic singular points.

MSC:

37D10 Invariant manifold theory for dynamical systems
37C29 Homoclinic and heteroclinic orbits for dynamical systems

Software:

HomCont
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Krauskopf, B.; Osinga, H., Two-dimensional global manifolds of vector fields, Chaos, Solitons & Fractals, 3, 768-774 (1999) · Zbl 0983.37110
[2] Wolf, J. B.; Winfried, K., Numerical Taylor expansions of invariant manifolds in large dynamical systems, Numer Math, 80, 1-38 (1998) · Zbl 0909.65044
[3] Vakakis, A. F.; Azeez, M. F.A., Analytic approximation of the homoclinic orbits of the Lorenz system at \(σ=10, b=8/3\) and \(ρ=13.926\)…, Nonlin Dyn, 15, 245-257 (1998) · Zbl 0910.34053
[4] Broer, H. W.; Osinga1, H. M.; Vegter, G., Algorithms for computing normally hyperbolic invariant manifolds, Zeitschr Angew Math Phys ZAMP, 48, 480-524 (1997) · Zbl 0872.34030
[5] Palis, J.; Takens, F., Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, Cambridge studies in advanced mathematics, vol. 35 (1993), Cambridge University Press · Zbl 0790.58014
[6] Ruelle, D., Elements of dicerentiable dynamics and bifurcation theory (1989), Academic Press: Academic Press New York
[7] Shub, M., Global stability of dynamical systems (1987), Springer-Verlag
[8] Sandstede, B., Convergence estimates for the numerical approximation of homoclinic solutions, IMA J Numer Anal, 17, 437-462 (1997) · Zbl 0899.65044
[9] Beyn, W. J., The numerical computation of connecting orbits in dynamical systems, IMA J Numer Anal, 9, 379-405 (1990) · Zbl 0706.65080
[10] Friedman, M. J.; Doedel, E. J., Numerical computation and continuation of invariant manifolds connecting fixed points, IMA J Numer Anal, 28, 789-808 (1991) · Zbl 0735.65054
[11] Leonov, G. A., Bounds for attractors and the existence of homoclinic orbits in the Lorenz system, PMM J Appl Math Mecn, 65, 19-32 (2001) · Zbl 1025.34048
[12] Li, Z.; Chen, G.; Wolfgang, A. H., Homoclinic and heteroclinic orbits in a modified Lorenz system, Inform Sci, 165, 235-245 (2004) · Zbl 1057.37019
[13] Spreuer, H.; Adams, E., On the strange attractor and transverse homoclinic orbits for the Lorenz equations, J Math Anal Appl, 190, 329-360 (1995) · Zbl 0837.34053
[14] Spreuer, H.; Adams, E.; Karlsruhe, On the existence and the verified determination of homoclinic and heteroclinic orbits of the origin for the Lorenz equation, Comput Suppl, 9, 233-246 (1993) · Zbl 0791.34043
[15] Meyer, K. R., The evolution of the stable and unstable manifold of an equilibrium point, Celest Mech Dyn Astron, 70, 159-165 (1998) · Zbl 0936.70016
[16] Lassoued, L.; Mathlouthi, S., A numerical method for finding homoclinic orbits of Hamiltonian systems, Numer Funct Anal Optim, 13, 155-172 (1992) · Zbl 0763.34037
[17] Schecter, S., Rate of convergence of numerical approximations to homoclinic bifurcation points, IMA J Numer Anal, 15, 23-60 (1995) · Zbl 0816.65047
[18] Champneys, A. R.; Kuznetsov, Yu. A.; Sandstede, B., A numerical toolbox for homoclinic bifurcation analysis, Int J Bifurcat Chaos, 6, 867-887 (1996) · Zbl 0877.65058
[19] Bai, F.; Champneys, A. R., Numerical detection and continuation of saddle-node homoclinic bifurcations of codimension one and two, Dyn Stab Syst, 11, 325-346 (1996) · Zbl 0867.34036
[20] Krauskopf, B.; Osinga, H., Two-dimensional global manifolds of vector fields, Chaos, Solitons & Fractals, 9, 768-774 (1999) · Zbl 0983.37110
[21] Morozov, A. D.; Dragunova, T. N., Visualization and analysis of invariant sets of dynamical systems, Nonlin Anal Theory, 47, 5285-5296 (2001) · Zbl 1042.37540
[22] Qin, Y., Teaching materials about ordinary question of motion stabilization (1958), Science Publishing Company: Science Publishing Company Beijing, (in Chinese)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.