zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stability criteria for impulsive systems on time scales. (English) Zbl 1142.39011
This paper deals with the asymptotic stability of impulsive systems on time scales by means of comparison theorem and Lyapunov functions. An example is included to illustrate the efficiency of the proposed results.

39A11Stability of difference equations (MSC2000)
39A12Discrete version of topics in analysis
34A37Differential equations with impulses
Full Text: DOI
[1] Agarwal, R. P.; Bohner, M.; Regan, D. O.; Peterson, A.: Dynamic equations on time scales: a survey, J. comput. Appl. math. 141, 1-26 (2002) · Zbl 1020.39008 · doi:10.1016/S0377-0427(01)00432-0
[2] Bainov, D. D.; Simeonov, P. S.: Systems with impulse effect, stability theory and applications, (1989) · Zbl 0683.34032
[3] Bohner, M.; Peterson, A.: Dynamic equations on time scales: an introduction with applications, (2001) · Zbl 0978.39001
[4] Bohner, M.; Peterson, A.: Advances in dynamic equations on time scales, (2003) · Zbl 1025.34001
[5] Erbe, L.; Peterson, A.; Saker, S. H.: Asymptotic behavior of solutions of a third-order nonlinear dynamic equation on time scales, J. comput. Appl. math. 181, 92-102 (2005) · Zbl 1075.39010 · doi:10.1016/j.cam.2004.11.021
[6] Hoffacker, J.; Tisdell, C. C.: Stability and instability for dynamic equations on time scales, Comput. math. Appl. 49, 1327-1334 (2005) · Zbl 1093.34023 · doi:10.1016/j.camwa.2005.01.016
[7] Dacunha, J. J.: Stability for time varying linear dynamic systems on time scales, J. comput. Appl. math. 176, 381-410 (2005) · Zbl 1064.39005 · doi:10.1016/j.cam.2004.07.026
[8] Kaymakcalan, B.: Lyapunov stability theory for dynamic systems on time scales, J. appl. Math. stochastic anal. 5, 275-281 (1992) · Zbl 0762.34027 · doi:10.1155/S1048953392000224
[9] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S.: Theory of impulsive differential equations, (1989) · Zbl 0718.34011
[10] Lakshmikantham, V.; Vatsala, A. S.: Hybrid systems on time scales, J. comput. Appl. math. 141, 227-235 (2002) · Zbl 1032.34050 · doi:10.1016/S0377-0427(01)00448-4
[11] Yang, T.: Impulsive systems and control: theory and applications, (2001)
[12] Zhang, Y.; Sun, J.: Eventual practical stability of impulsive differential equations with time delay in terms of two measurements, J. comput. Appl. math. 176, 223-229 (2005) · Zbl 1063.34070 · doi:10.1016/j.cam.2004.07.014