zbMATH — the first resource for mathematics

On the asymptotic distribution of the spectrum of an operator over irreducible representations of its symmetry group. (English. Russian original) Zbl 1142.58308
Funct. Anal. Appl. 40, No. 3, 225-227 (2006); translation from Funkts. Anal. Prilozh. 40, No. 3, 72-75 (2005).
Summary: We prove that a representation of a finite group in the eigenfunction space of an elliptic operator defined on a Riemannian manifold and commuting with the effective action of the group is asymptotically a multiple of the regular representation of the group.
58J37 Perturbations of PDEs on manifolds; asymptotics
35P20 Asymptotic distributions of eigenvalues in context of PDEs
47F05 General theory of partial differential operators (should also be assigned at least one other classification number in Section 47-XX)
58J50 Spectral problems; spectral geometry; scattering theory on manifolds
Full Text: DOI
[1] V. I. Arnold, Seminar Problems 2003–2004 [in Russian], MTsNMO, Moscow, 2005.
[2] A. M. Vershik and S. V. Kerov, Funkts. Anal. Prilozhen, 19:1 (1985), 25–36; English transl.: Funct. Anal. Appl, 19 (1985), 21–31.
[3] H. Donnelly, Math. Ann., 224 (1976), 161–170. · Zbl 0327.53031 · doi:10.1007/BF01436198
[4] H. Donnelly, Math. Ann., 237 (1978), 23–40. · Zbl 0379.53019 · doi:10.1007/BF01351556
[5] V. N. Karpushkin, Vestnik Moskov. Univ., Ser. I, Mat. Mekh., 1974, No. 2, 9–13; English transl.: Moscow Univ. Math. Bull., 29:1/2 (1974), 136–139.
[6] F. Klein, Vorlesungen uber die Entwicklung der Mathematik im 19. Jahrhundert, Springer-Verlag, Berlin, 1926, 1979. · JFM 52.0022.05
[7] R. Courant and D. Hilbert, Methoden der Mathematischen Physik. Vol. 1, Interscience Publishers, New York, 1943. · Zbl 0061.16602
[8] G. Ya. Lyubarskii, Group Theory and its Application in Physics [in Russian], Gosudarstv. Izdat. Fiz. Mat. Lit., Moscow, 1958.
[9] K. Maurin, Metody przestrzeni Hilberta [in Polish], PWN, Warszawa, 1959.
[10] F. Riesz and B. Sz.-Nagy, Leçons d’analyse fonctionnelle, Akadémiai Kiadó, Budapest, 1952.
[11] B. Helffer and D. Robert, Amer. J. Math., 106 (1984), 1199–1236. · Zbl 0583.58029 · doi:10.2307/2374278
[12] M. A. Shubin, Pseudodifferential Operators and Spectral Theory [in Russian], Nauka, Moscow, 1978. · Zbl 0451.47064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.