zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Mixtures of compound Poisson processes as models of tick-by-tick financial data. (English) Zbl 1142.60392
Summary: A model for the phenomenological description of tick-by-tick share prices in a stock exchange is introduced. It is based on mixtures of compound Poisson processes. Preliminary results based on Monte Carlo simulation show that this model can reproduce various stylized facts.

MSC:
60K10Applications of renewal theory
60K05Renewal theory
65C05Monte Carlo methods
91B84Economic time series analysis
WorldCat.org
Full Text: DOI
References:
[1] Montroll, E. W.; Weiss, G. H.: Random walks on lattices, II. J math phys 6, 167-181 (1965)
[2] Lundberg, F.: Approximerad framställning av sannolikehetsfunktionen. Aaterförsäkering av kollektivrisker. (1903)
[3] Cramér H. On the mathematical theory of risk, Skandia Jubilee Volume, Stockholm, 1930. · Zbl 56.1100.03
[4] Metzler, R.; Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys rep 339, 1-77 (2000) · Zbl 0984.82032
[5] Metzler, R.; Klafter, Y.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J phys A: math gen 37, R161-R208 (2004) · Zbl 1075.82018
[6] Scalas, E.: The application of continuous-time random walks in finance and economics. Physica A, 225-239 (2006)
[7] Scalas, E.; Gorenflo, R.; Mainardi, F.: Fractional calculus and continuous-time finance. Physica A 284, 376-384 (2000)
[8] Mainardi, F.; Raberto, M.; Gorenflo, R.; Scalas, E.: Fractional calculus and continuous-time finance II: The waiting-time distribution. Physica A 287, 468-481 (2000) · Zbl 1138.91444
[9] Gorenflo, R.; Mainardi, F.; Scalas, E.; Raberto, M.: Fractional calculus and continuous-time finance III: The diffusion limit. Trends in mathematics -- mathematical finance, 171-180 (2001) · Zbl 1138.91444
[10] Press, S. J.: A compound events model for security prices. J bus 40, 317-335 (1967)
[11] Raberto, M.; Scalas, E.; Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Physica A 314, 749-755 (2002) · Zbl 1001.91033
[12] Scalas, E.; Gorenflo, R.; Luckock, H.; Mainardi, F.; Mantelli, M.; Raberto, M.: Anomalous waiting times in high-frequency financial data. Quant finan 4, 695-702 (2004)
[13] Scalas, E.; Kaizoji, T.; Kirchler, M.; Huber, J.; Tedeschi, A.: Waiting times between orders and trades in double-auction markets. Physica A 366, 463-471 (2006)
[14] S. Bianco, P. Grigolini, Aging in financial markets. this issue. · Zbl 1142.91714
[15] Cox, D.: Renewal theory. (1967) · Zbl 0168.16106
[16] Allegrini P, Barbi F, Grigolini P, Paradisi P. Dishomogeneous Poisson processes vs. homogeneous non-Poisson processes, preprint, 2006. · Zbl 1166.60052
[17] Allegrini, P.; Barbi, F.; Grigolini, P.; Paradisi, P.: Renewal, modulation and superstatistics. Phys rev E 73, 046136 (2006) · Zbl 1142.82355
[18] Gillespie TR. The stochastically subordinated Poisson normal process for modelling financial assets, Ph.D Thesis, School of Mathematics and Statistics, The University of Sydney, 1999. · Zbl 1109.62357
[19] Edelman, D.; Gillespie, T.: The stochastically subordinated Poisson normal process for modelling financial assets. Ann oper res 100, 133-164 (2000) · Zbl 0974.91023
[20] Gelfand, I. M.; Shilov, G. E.: Generalized functions. 1 (1964)
[21] Engle, R.; Russel, J.: Forecasting the frequency of changes in quoted foreign exchange prices with the autoregressive conditional duration model. J empirical finan 4, 187-212 (1997)
[22] Engle, R.; Russel, J.: Autoregressive conditional duration: a new model for irregularly spaced transaction data. Econometrica 66, 1127-1162 (1998) · Zbl 1055.62571
[23] Meerschaert, M. M.; Scalas, E.: Coupled continuous time random walks in finance. Physica A 370, 114-118 (2006)
[24] Bertram, W.: An empirical investigation of australian stock exchange data. Physica A 341, 533-546 (2004)
[25] Scalas E, Aste T, Di Matteo T, Nicodemi M, Tedeschi A. in preparation.