van der Meulen, F. H.; van der Vaart, A. W.; van Zanten, J. H. Convergence rates of posterior distributions for Brownian semimartingale models. (English) Zbl 1142.62057 Bernoulli 12, No. 5, 863-888 (2006). Summary: We consider the asymptotic behaviour of posterior distributions based on continuous observations from a Brownian semimartingale model. We present a general result that bounds the posterior rate of convergence in terms of the complexity of the model and the amount of prior mass given to balls centred around the true parameter. This result is illustrated for three special cases of the model: the Gaussian white noise model, the perturbed dynamical system and the ergodic diffusion model. Some examples for specific priors are discussed as well. Cited in 15 Documents MSC: 62M05 Markov processes: estimation; hidden Markov models 62F12 Asymptotic properties of parametric estimators 60J65 Brownian motion 62F15 Bayesian inference 60J60 Diffusion processes 62E20 Asymptotic distribution theory in statistics Keywords:Bayesian estimation; continuous semimartingales; Dirichlet processes; Hellinger distance; infinite-dimensional model; rate of convergence; wavelets × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Birgé, L. and Massart, P. (2000) An adaptive compression algorithm in Besov spaces. Constr. Approx., 16, 1-36. · Zbl 1004.41006 · doi:10.1007/s003659910001 [2] Devore, R.A. and Lorentz, G.G. (1993) Constructive Approximation. Berlin: Springer-Verlag. · Zbl 0797.41016 [3] Dietz, H.M. and Kutoyants, Yu.A. (2003) Parameter estimation for some non-recurrent solutions of SDE. Statist. Decisions, 21(1), 29-45. · Zbl 1046.62081 · doi:10.1524/stnd.21.1.29.20321 [4] Ghosal, S. and van der Vaart, A.W. (2003) Posterior convergence rates of Dirichlet mixtures of normal distributions for smooth densities. Preprint 2003-12. http://www.math.vu.nl/stochastics/ publications.php (accessed 24 February 2006). URL: · Zbl 1117.62046 [5] Ghosal, S. and van der Vaart, A.W. (2004) Convergence rates of posterior distributions for noniid observations. Preprint 2003-17. http://www.math.vu.nl/stochastics/publications.php (accessed 24 February 2006). Ann. Statist. To appear. URL: · Zbl 1114.62060 [6] Ghosh J.K. and Ramamoorthi, R.V. (2003) Bayesian Nonparametrics. New York: Springer-Verlag. · Zbl 1029.62004 [7] Härdle, W., Kerkyacharian, G., Picard, D. and Tsybakov, A. (1998) Wavelets, Approximation, and Statistical Applications. Lectures Notes in Statist. 129. New York: Springer-Verlag. · Zbl 0899.62002 [8] Höpfner, R. and Kutoyants, Yu.A. (2003) On a problem of statistical inference in null recurrent diffusions. Statist. Inference Stochastic Process., 6(1), 25-42. · Zbl 1012.62091 · doi:10.1023/A:1022607201304 [9] Ibragimov, I.A. and Hasḿinskii R.Z. (1981) Statistical Estimation: Asymptotic Theory. New York: Springer-Verlag. · Zbl 0467.62026 [10] Itô, K. and McKean, H.P., Jr. (1965) Diffusion Processes and Their Sample Paths. Berlin: Springer- Verlag. · Zbl 0127.09503 [11] Karatzas, I. and Shreve, S.E. (1991) Brownian Motion and Stochastic Calculus, 2nd edn. New York: Springer-Verlag. · Zbl 0734.60060 [12] Kerkyacharian, G. and Picard, D, (2004) Entropy, universal coding, approximation and bases properties. Constr. Approx., 20, 1-37. · Zbl 1055.41015 · doi:10.1007/s00365-003-0556-z [13] Kutoyants, Yu.A. (1984) Parameter Estimation for Stochastic Processes. Berlin: Heldermann Verlag. · Zbl 0542.62073 [14] Kutoyants, Yu.A. (1994) Identification of Dynamical Systems with Small Noise. Dordrecht: Kluwer Academic. · Zbl 0831.62058 [15] Kutoyants, Yu.A. (2004) Statistical Inference for Ergodic Diffusion Processes. New York: Springer- Verlag. · Zbl 1038.62073 [16] Liptser, R.S. and Shiryayev, A.N. (1977) Statistics of Random Processes I. New York: Springer-Verlag. · Zbl 0364.60004 [17] Loukianova, D. and Loukianov, O. (2005) Deterministic equivalents of additive functionals of recurrent diffusions and drift estimation. · Zbl 1204.60032 · doi:10.1007/s11203-007-9010-3 [18] Pollard, D. (1990) Empirical Processes: Theory and Applications, NSF-CBMS Reg. Conf. Ser. Probab. Statist. 2. Hayward, CA: Institute of Mathematical Statistics; Alexandria, VA: American Statistical Association. · Zbl 0741.60001 [19] Protter, P. (2004) Stochastic Integration and Differential Equations, 2nd edn. Berlin: Springer-Verlag. · Zbl 1041.60005 [20] Prakasa Rao, B.L.S. (1999) Statistical Inference for Diffusion Type Processes. London: Edward Arnold. · Zbl 0952.62077 [21] Revuz, D. and Yor, M. (1999) Continuous Martingales and Brownian Motion, 3rd edn. Berlin: Springer-Verlag. · Zbl 0917.60006 [22] Shen, X. and Wasserman, L. (2001) Rates of convergence of posterior distributions. Ann. Statist., 29, 687-714. · Zbl 1041.62022 · doi:10.1214/aos/1009210686 [23] van der Vaart, A.W. and Wellner, J.A. (1996) Weak Convergence and Empirical Processes with Applications to Statistics. New York: Springer-Verlag. · Zbl 0862.60002 [24] van Zanten, J.H. (2003) On uniform laws of large numbers for ergodic diffusions and consistency of estimators. Statist. Inference Stochastic Process., 6(2), 199-213. · Zbl 1036.60025 · doi:10.1023/A:1023904715206 [25] van Zanten, J.H. (2005) On the rate of convergence of the maximum likelihood estimator in Brownian semimartingale models. Bernoulli, 11, 643-664. · Zbl 1092.62079 · doi:10.3150/bj/1126126763 [26] Zhao, L.H. (2000) Bayesian aspects of some nonparametric problems. Ann. Statist., 28, 532-552. · Zbl 1010.62025 · doi:10.1214/aos/1016218229 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.