Modelling total tail dependence along diagonals. (English) Zbl 1142.62097

Summary: An approach to modelling total tail dependence beyond the main diagonals is proposed. The concept introduced combines the principal and minor diagonals to describe total extreme dependence. A framework is introduced for the measurement of total tail dependence under model mixtures. Illustrations are presented using empirical data on stock market indices and exchange rates. An extension is provided to the multivariate case and total tail dependence is considered for model mixtures.


62P05 Applications of statistics to actuarial sciences and financial mathematics
62G32 Statistics of extreme values; tail inference
91B28 Finance etc. (MSC2000)
62H20 Measures of association (correlation, canonical correlation, etc.)
62P20 Applications of statistics to economics


Full Text: DOI


[1] Alink, S.; Löwe, M.; Wüthrich, M.V., Diversification of aggregate dependent risks, Insurance: mathematics and economics, 35, 77-95, (2004) · Zbl 1052.62105
[2] Bouyé, E., Durrleman, V., Nikeghbali, A., Riboulet, G., Roncalli, T., 2002. Copulas for finance—a reading guide and some applications. Groupe de recherche opérationelle, Crédit Lyonnais. Working Paper
[3] Charpentier, A., 2003. Tail distribution and dependence measures. In: Proceedings ASTIN, Berlin
[4] Coles, S.G.; Heffernan, J.E.; Tawn, J.A., Dependence measures for extreme value analyses, Extremes, 2, 339-365, (1999) · Zbl 0972.62030
[5] Dropsy, V.; Fatemeh, N.I., Macroeconomic policies, exchange rate regimes and national stock markets, International review of economics & finance, 3, 195-220, (1994)
[6] Embrechts, P.; McNeil, A.; Straumann, D., Correlation and dependence in risk management: properties and pitfalls, (), 176-223
[7] Embrechts, P.; Hoeing, A.; Juri, A., Using copulae to bound the value-at-risk for functions of dependent risk, Finance stochastic, 7, 145-167, (2003) · Zbl 1039.91023
[8] Frahm, G.; Junker, M.; Schmidt, R., Estimating the tail-dependence coefficient: properties and pitfalls, Insurance: mathematics and economics, 37, 80-100, (2005) · Zbl 1101.62012
[9] Heffernan, J.E., A directory of coefficients of tail dependence, Extremes, 3, 279-290, (2000) · Zbl 0979.62040
[10] Joe, H., Multivariate models and dependence concepts, (1997), Chapman & Hall London · Zbl 0990.62517
[11] Jogdeo, K., Concepts of dependence, (), 324-334
[12] Li, D.X., 1999. Value at risk based on the volatility, skewness and kurtosis. Working Paper, Riskmetrics Group
[13] Lo, A.W.; MacKinlay, A.C., A non-random walk down wall street, (1999), Princeton University Press Princeton, NJ
[14] Longin, F.; Solnik, B., Extreme correlation of international equity markets, The journal of finance, 56, 649-676, (2001)
[15] McLanchlan, G.J.; Krishnan, T., The EM algorithm and extensions, (1997), Wiley New York
[16] McNeil, A.J.; Frey, R.; Embrechts, P., Quantitative risk management — concept, techniques and tools, (2005), Princeton University Press Princeton, NJ · Zbl 1089.91037
[17] Mikusiński, M.; Sherwood, H.; Taylor, H.D., Probabilistic interpretations of copulas and their convex sum, (), 95-112 · Zbl 0733.60023
[18] Nelsen, R.B., ()
[19] Rodriguez, J.C., 2006. Measuring financial contagion: A copula approach. Journal of Empirical Finance, doi:10.1016/j.jempfin.2006.07.002
[20] Schweizer, B., Thirty years of copulas, (), 13-50 · Zbl 0727.60001
[21] Sibuya, M., Bivariate extreme statistics, Annals of the institute of statistical mathematics, 11, 195-210, (1960) · Zbl 0095.33703
[22] Sklar, A., Random variables, joint distribution functions and copulas, Kybermetrica, 9, 449-460, (1973) · Zbl 0292.60036
[23] Zhang, M.H.; Cheng, Q.S., Determine the number of components in a mixture model by the extended KS test, Pattern recognition letters, 25, 211-216, (2004)
[24] Zhang, M.H.; Cheng, Q.S., An approach to var for capital markets with Gaussian mixture, Applied mathematics and computation, 18, 1079-1085, (2005) · Zbl 1096.91038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.