×

Multiscale inference about a density. (English) Zbl 1142.62336

Summary: We introduce a multiscale test statistic based on local order statistics and spacings that provides simultaneous confidence statements for the existence and location of local increases and decreases of a density or a failure rate. The procedure provides guaranteed finite-sample significance levels, is easy to implement and possesses certain asymptotic optimality and adaptivity properties.

MSC:

62G07 Density estimation
62G10 Nonparametric hypothesis testing
62G15 Nonparametric tolerance and confidence regions
62G30 Order statistics; empirical distribution functions
62G20 Asymptotic properties of nonparametric inference
62N03 Testing in survival analysis and censored data
65C60 Computational problems in statistics (MSC2010)

Software:

ftnonpar; SiZer

References:

[1] Barlow, R. E. and Doksum, K. A. (1972). Isotonic tests for convex orderings. Proc. Sixth Berkeley Symp. Math. Statist. Probab. 1 293-323. Univ. California Press, Berkeley. · Zbl 0231.62061
[2] Bickel, P. J. and Doksum, K. A. (1969). Tests for monotone failure rates based on normalized spacings. Ann. Math. Statist. 40 1216-1235. · Zbl 0191.50504 · doi:10.1214/aoms/1177697498
[3] Cheng, M. Y. and Hall, P. (1998). Calibrating the excess mass and dip tests of modality. J. Roy. Statist. Soc. Ser. B 60 579-589. JSTOR: · Zbl 0909.62046 · doi:10.1111/1467-9868.00141
[4] Cheng, M. Y. and Hall, P. (1999). Mode testing in difficult cases. Ann. Statist. 27 1294-1315. · Zbl 0957.62028 · doi:10.1214/aos/1017938927
[5] Chaudhuri, P. and Marron, J. S. (1999). SiZer for the exploration of structures in curves. J. Amer. Statist. Assoc. 94 807-823. JSTOR: · Zbl 1072.62556 · doi:10.2307/2669996
[6] Chaudhuri, P. and Marron, J. S. (2000). Scale space view of curve estimation. Ann. Statist. 28 408-428. · Zbl 1106.62318 · doi:10.1214/aos/1016218224
[7] Davies, P. L. and Kovac, A. (2004). Densities, spectral densities and modality. Ann. Statist. 32 1093-1136. · Zbl 1093.62042 · doi:10.1214/009053604000000364
[8] Dümbgen, L. (1998). New goodness-of-fit tests and their application to nonparametric confidence sets. Ann. Statist. 26 288-314. · Zbl 0930.62034 · doi:10.1214/aos/1030563987
[9] Dümbgen, L. (2002). Application of local rank tests to nonparametric regression. J. Nonparametr. Statist. 14 511-537. · Zbl 1019.62041 · doi:10.1080/10485250213903
[10] Dümbgen, L. and Spokoiny, V. G. (2001). Multiscale testing of qualitative hypotheses. Ann. Statist. 29 124-152. · Zbl 1029.62070 · doi:10.1214/aos/996986504
[11] Dümbgen, L. and Walther, G. (2006, revised 2007). Multiscale inference about a density. Technical Report 56, Univ. Bern, IMSV. · Zbl 1142.62336
[12] Fisher, N. I., Mammen, E. and Marron, J. S. (1994). Testing for multimodality. Comput. Statist. Data Anal. 18 499-512. · Zbl 0900.62227 · doi:10.1016/0167-9473(94)90080-9
[13] Gijbels, I. and Heckman, N. (2004). Nonparametric testing for a monotone hazard function via normalized spacings. J. Nonparametr. Statist. 16 463-477. · Zbl 1076.62100 · doi:10.1080/10485250310001622668
[14] Good, I. J. and Gaskins, R. A. (1980). Density estimation and bump hunting by the penalized maximum likelihood method exemplified by scattering and meteorite data (with discussion). J. Amer. Statist. Assoc. 75 42-73. · Zbl 0432.62024 · doi:10.2307/2287377
[15] Hall, P. and van Keilegom, I. (2005). Testing for monotone increasing hazard rate. Ann. Statist. 33 1109-1137. · Zbl 1072.62098 · doi:10.1214/009053605000000039
[16] Hartigan, J. A. and Hartigan, P. M. (1985). The DIP test of multimodality. Ann. Statist. 13 70-84. · Zbl 0575.62045 · doi:10.1214/aos/1176346577
[17] Hartigan, J. A. (1987). Estimation of a convex density contour in two dimensions. J. Amer. Statist. Assoc. 82 267-270. JSTOR: · Zbl 0607.62045 · doi:10.2307/2289162
[18] Hasminskii, R. Z. (1979). Lower bounds for the risk of nonparametric estimates of the mode. In Contributions to Statistics , Jaroslav Hàjek Memorial Volume (J. Jureckova, ed.) 91-97. Reidel, Dordrecht. · Zbl 0419.62037
[19] Hengartner, N. W. and Stark P. B. (1995). Finite-sample confidence envelopes for shape-restricted densities. Ann. Statist. 23 525-550. · Zbl 0828.62043 · doi:10.1214/aos/1176324534
[20] LeCam, L. and Yang, G. L. (1990). Asymptotics in Statistics . Springer, New York. · Zbl 0719.62003
[21] Mammen, E., Marron, J. S. and Fisher, N. I. (1992). Some asymptotics for multimodality tests based on kernel density estimates. Probab. Theory Relaled Fields 91 115-132. · Zbl 0745.62048 · doi:10.1007/BF01194493
[22] Minnotte, M. C. and Scott, D. W. (1993). The mode tree: A tool for visualization of nonparametric density features. J. Comput. Graph. Statist. 2 51-68.
[23] Minnotte, M. C. (1997). Nonparametric testing of the existence of modes. Ann. Statist. 25 1646-1660. · Zbl 0936.62056 · doi:10.1214/aos/1031594735
[24] Müller, D. W. and Sawitzki, G. (1991). Excess mass estimates and tests for multimodality. J. Amer. Statist. Assoc. 86 738-746. · Zbl 0733.62040 · doi:10.2307/2290406
[25] Polonik, W. (1995). Measuring mass concentrations and estimating density contour clusters-An excess mass approach. Ann. Statist. 23 855-881. · Zbl 0841.62045 · doi:10.1214/aos/1176324626
[26] Pyke, R. (1995). Spacings (with discussion). J. Roy. Statist. Soc. Ser. B 27 395-449. JSTOR: · Zbl 0144.41704
[27] Proschan, F. and Pyke, R. (1967). Tests for monotone failure rate. Proc. Fifth Berkeley Symp. Math. Statist. Probab. 3 293-313. Univ. California Press, Berkeley. · Zbl 0203.22203
[28] Roeder, K. (1992). Semiparametric estimation of normal mixture densities. Ann. Statist. 20 929-943. · Zbl 0746.62044 · doi:10.1214/aos/1176348664
[29] Silverman, B.W. (1981). Using kernel density estimates to investigate multimodality. J. Roy. Statist. Soc. Ser. B 43 97-99. JSTOR:
[30] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes. With Applications to Statistics . Springer, New York. · Zbl 0862.60002
[31] Walther, G. (2001). Multiscale maximum likelihood analysis of a semiparametric model, with applications. Ann. Statist. 29 1297-1319. · Zbl 1043.62043 · doi:10.1214/aos/1013203455
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.