zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Model selection and estimation in the Gaussian graphical model. (English) Zbl 1142.62408
Summary: We propose penalized likelihood methods for estimating the concentration matrix in the Gaussian graphical model. The methods lead to a sparse and shrinkage estimator of the concentration matrix that is positive definite, and thus conduct model selection and estimation simultaneously. The implementation of the methods is nontrivial because of the positive definite constraint on the concentration matrix, but we show that the computation can be done effectively by taking advantage of the efficient maxdet algorithm developed in convex optimization. We propose a BIC-type criterion for the selection of the tuning parameter in the penalized likelihood methods. The connection between our methods and existing methods is illustrated. Simulations and real examples demonstrate the competitive performance of the new methods.

MSC:
62N02Estimation (survival analysis)
62P10Applications of statistics to biology and medical sciences
65C60Computational problems in statistics
WorldCat.org
Full Text: DOI